
A Partitioning Methodology
for BDD-Based Verification

Debashis Sahoo1, Subramanian Iyer2, Jawahar Jain3, Christian Stangier3,
Amit Narayan, David L. Dill1, and E. Allen Emerson2

1 Stanford University, Stanford CA 94305, USA
2 University of Texas at Austin, Austin, TX 78712, USA
3 Fujitsu Labs of America, Sunnyvale, CA 94085, USA

Abstract. The main challenge in BDD-based verification is dealing with
the memory explosion problem during reachability analysis. In this pa-
per we advocate a methodology to handle this problem based on state
space partitioning of functions as well as relations. We investigate the
key questions of how to perform partitioning in reachability based veri-
fication and provide suitable algorithms. We also address the problem of
instability of BDD-based verification by automatically picking the best
configuration from different short traces of the reachability computation.
Our approach drastically decreases verification time, often by orders of
magnitude.

1 Introduction

Verification and synthesis of sequential circuits require efficient techniques to
represent and analyze the state space of the design under consideration [6, 13].
It is well known that in sequential circuits the number of reachable states can
be exponential in the number of state elements present in the circuit. A pop-
ular approach to deal with this state explosion problem consists of implicitly
representing and manipulating functions using Reduced Ordered Binary Deci-
sion Diagrams (OBDDs) [2]. Though often efficient, there are cases, where the
OBDD representation is not compact. Unfortunately, some practical applica-
tion areas seem to exhibit this worst case complexity frequently. To overcome
this problem of explosive memory requirements, the use of Partitioned-OBDDs
(POBDDs) has been suggested [9]. By partitioning the state space into disjoint
subspaces, and representing as well as processing all functions in each subspace
independently of other subspaces, efficiency in time and space can be obtained.

The partitioned reachability techniques suggested in [11] do not sufficiently
address the practical issues involved with partitioning, and as a result do not
scale well on many difficult circuits. In [8], dynamically partitioned OBDDs were
introduced as a capable data structure that extend the usefulness of POBDDs
for reachability and model checking. In this paper, we address the various issues
related to partitioning, including but not limited to data structure issues, and
demonstrate techniques that perform better than OBDDs as well as classical
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Partitioned-OBDDs. These techniques use heuristics to improve the existing
approaches.

Since OBDDs form a special case of POBDDs, where the whole function
is represented in a single partition, we focus our attention on analyzing the
deficiencies in the classical approach to partitioning. This will set the stage for
introducing our algorithms and proving their effectiveness.

What Is Missing in the Classical Approach?

Often OBDDs suffice for concise symbolic representation of boolean functions.
Note, such functions are not the subject of this paper as further improving
efficiency in their verification will not address the main bottleneck of the cur-
rent BDD-based verification. In such cases, an OBDD approach can be more
efficient as they avoid the partitioning overhead. However, for many practical
applications, the function representations are too large for efficient monolithic
representation as a single OBDD. If we accept this premise, then partitioning
should show a distinct advantage. In this context, some problems arise naturally,
which have not been addressed effectively in the literature. For example, the key
questions include what functions should be considered as a basis for generating
partitions, how many partitions should be created, when should the partitioning
commence, how should the processing of partitions be prioritized, etc. We posit
that these questions are fundamental to creating any practical technique that
exploits partitions, and hence, are fundamental for any technique to make the
BDD-based verification more practical and accordingly provide efficient algo-
rithms to address the same.

Further, BDD approaches have a high sensitivity to parameter configuration.
We develop a trace-centric approach to address this instability in BDD-based
verification by automatically picking the best configuration from multiple short
previews of the reachability computation.

Our fully automated approach completes all circuits but two in the VIS
Verilog benchmark suite. An impressive gain over previous partitioned techniques
is also seen.

Related Work

Algorithms for POBDD-based reachability were presented in [11]. They do not
however adequately address some of the key questions relating to the actual
application of partitioning, which are addressed here.

In [4] a technique is discussed where the set of reachable states is decom-
posed into two or more sets during the intermediate stages of computation and
reachability is performed on these decompositions separately. However, after a
few steps of reachability, results from these different sets are combined to obtain
a monolithic OBDD representation of the reachable state set.

Recently, a method for distributed model checking was studied by [7]. It
parallelizes the classical model checking algorithm [5] using the window-based
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partitioning first mentioned in [11]. Such distributed techniques can further help
increase the practicality of the approach presented here.

In the remainder of the paper we address the various questions raised above,
present the results, and discuss their significance. We start by presenting relevant
background information in Section 2. The basic rationale and an overall picture
of our approach are in Section 3, followed by algorithmic details. Section 4 has
experimental results that confirm that our approach is indeed more efficient and
stable, in both time and space, then previous POBDD [11] as well as state-of-
the-art OBDD approaches. Section 5 is a summary of the paper.

2 Preliminaries

Partitioned-OBDDs

The idea of partitioning was used to discuss a function representation scheme
called Partitioned-OBDDs in [9], which was further extensively developed in [12].

Definition 1. [12] Given a Boolean function f : Bn → B, defined over n inputs
Xn = {x1, . . . , xn}, the partitioned-OBDD (henceforth, POBDD) representation
χf of f is a set of k function pairs, χf = {(w1, f1), . . . , (wk, fk)} where, wi :
Bn → B and fi : Bn → B, are also defined over Xn and satisfy the following
conditions:

1. wi and fi are represented as OBDDs respecting the variable ordering πi,
for 1 ≤ i ≤ k.

2. w1 ∨ w2 ∨ . . . ∨ wk = 1
3. wi ∧ wj = 0, for i �= j
4. fi = wi ∧ f , for 1 ≤ i ≤ k

The set {w1, . . . , wk} is denoted by W . Each wi is called a window function
and represents a partition of the Boolean space over which f is defined. Each
partition is represented separately as an OBDD and can have a different variable
order. Most OBDD-based algorithms can be adapted easily for POBDDs.

Partitioned-OBDDs are canonical and various Boolean operations can be ef-
ficiently performed on them just like OBDDs. In addition, they can be exponen-
tially more compact than OBDDs for certain classes of functions. The practical
utility of this representation is also demonstrated by constructing OBDDs for
the outputs of combinational circuits [12]. An excellent comparison of the com-
putational power of various BDD-based representations and partitioned-OBDDs
may be found in [1].

Reachability and Invariant Checking

The standard reachability algorithm is based on a breadth-first traversal of finite-
state machines [6, 10, 16]. The algorithm takes as inputs the set of initial states,
I(s), expressed in terms of the present state variables, s, and a transition relation,
T (s, s′, i) that relates the next state s′ a system can reach from a state s on an
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input i. The transition relation, T (s, s′, i), is obtained by taking a conjunction
of the transition relations, s

′
k = fk(s, i), of the individual state elements, i.e.,

T (s, s′, i) =
∏

(s
′
k = fk(s, i)). Given a set of states, R(s), that the system can

reach, the set of next states, N(s′), is calculated using the equation N(s′) =
∃s,i[T (s, s′, i)∧R(s)]. This calculation is also known as image computation. The
set of reached states is computed by adding N(s) (obtained by replacing variables
s′ with s) to R(s) and iteratively performing the above image computation step
until a fixed point is reached.

State space partitioning induces a partitioning on transition relations. The
transition relation, Tjk, comprised of transitions from states in partition j to
states in partition k, can be derived by conjoining T with the respective window
functions expressed appropriately in terms of present and next state variables,
as Tjk(s, s′, i) = wj(s)wk(s′)T (s, s′, i). Each such Tjk can have an implicitly
conjoined [3] representation.

POBDD-Reachability(TR, InitStates) {
Initialize Rch to InitStates
Create partitioned rep for Rch
do {

for (each partition i)
Calculate LeastFixedPoint(Rch) in partition i

for (each partition i)
Communicate states from i to all partitions

} until (No new state is added to Rch);
}

Fig. 1. POBDD-based Reachability Algorithm

The flow of the POBDD-based-reachability algorithm is as shown in Fig. 1.
Essentially, the algorithm performs as many steps as possible of image compu-
tation within each partition i using Tii. This is called a step of least fixed point
within the partition. When no more images can be thus computed, it synchro-
nizes between partitions. This step is termed as communication, and is performed
from partition i to each partition j using Tij .

An invariant is a proposition that is to hold at every reachable state, and
therefore invariants can be checked as newer states are added during the reach-
ability computation.

In the next section, we will present techniques for the efficient construction
of POBDDs. We address the issues of when, where, as well as how partitioning
should be performed.

3 The Partitioning Methodology

The problem of reachability is about representation of sets of states and relations,
as well as operations performed on them. The key operation is successive image
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computation on fragments of the state space until all reachable states have been
explored. Thus, there is a need to develop an approach which can be efficient for
both aspects – creating subspaces so as to represent functions succinctly as well
as doing image computation.

In this context, the following questions naturally arise:
1. Is partitioning required at all?
2. If we must partition, what constitutes the “axis of partitioning”? In other
words, along what lines should the partitioning be performed? e.g., what splitting
variables should be used for creating windows?
3. As computation is performed, is the partitioning effective or is more parti-
tioning required?
4. If the blowup is likely to be temporary (local), can the partitioning be likewise?
5. Once partitions are generated, in what order should they be processed?

These issues give more heuristic challenges on the POBDDs which can lead to
a successful strategy in managing the behavior of BDDs in verification. Further
due to the dynamic nature of partitioning, our approach can reduce the memory
explosion in many circumstances. In contrast, the monolithic approach can exert
no control on the program to prevent it from generating huge data structures
that overflow memory.

We begin by discussing the algorithms for construction and utilization of
partitioned representations, which address the questions raised above. Then, we
detail the essential points of a trace-centric approach in the next section. This
is used to impose some stability on the performance of the OBDDs with respect
to the selection and setting of appropriate parameter values. At the end we
give a complete reachability algorithm based on all the heuristics described in
this paper. We now describe the mechanism for the construction and practical
application of Partitioned OBDDs.

3.1 Whether to Partition: Initial Partitioning

Since reachability needs manipulation of image BDD using transition relation, if
either of them shows signs of blowup then partitioning seems to be the prudent
choice. Figure 2 shows how partitioning is invoked. If the transition relation is
small, then many initial steps of reachability identical to the classical approach
using a single BDD can be performed and partitioning can be delayed. Reach-
ability is performed using OBDDs until such time as a “blowup” in BDD size
is detected. This may be measured either absolutely as a maximum size of the
symbolic representation of the image or in a relative way as the ratio of the
representation of the reached states before and after any image computation.
We adopt the latter approach with a threshold factor chosen a priori. However,
if the transition relation cannot be easily constructed, then it is advantageous
to partition quickly.

3.2 How to Partition: Choice of Partitioning Variable

After a “blowup” is detected, we select n splitting variables and the correspond-
ing 2n partitioning windows are created. The choice of the splitting variables is
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InitialPartitioning(T , I) {
If (T is large) {

R := I
Do Partitioning using T as basis.

} else {
R := Do Reachability from I using T until Blowup.
Do Partitioning using R and T as basis.

}
return Partitioned R;

}

Fig. 2. Initial Partitioning Algorithm

critical to the the effectiveness of the partitioning approach. The goal is to create
small and relatively balanced partitions that represent non-compatible functions.
A set of functions is said to be non-compatible if the totality of their individual
representations using different orders is far more compact, than their combined
representation as a whole. The splitting variable is selected by means of a cost
function, for e.g., as described in [11]. For each variable, the cost function takes
into account the relative BDD sizes of the positive and negative co-factors with
respect to the BDD size of the original graph.

SelectPartitioningVars(basis BDD F ) {
for (each method i := 1 to m) {

get ordered splitting variable list using F .
select top k variables.
for (each subspace j := 1 to 2k) {

cost[i][j] := size of the cofactor Fj .
}
cost of method i := Σjcost[i][j]

}
select method with lowest cost.
return corresponding vars.

}

Fig. 3. Selecting Partitioning Variable

However, the measurement of graph sizes for determining a blowup and for
recognizing its subsidence can be done with respect to the BDD size of the
transition relation or the image representation or both. We try to get separate
splitting variable choices from each of these three methods. We select that choice
which gives the smallest co-factor graphs after reordering as illustrated in the
Figure 3. Intuitively, this selects a variable that creates two partitions as non-
compatible as possible.
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3.3 Are More Partitions Required: Global Dynamic Repartitioning

Whenever a BDD size blowup is detected during computation in a partition,
dynamic repartitioning [8] is performed, as illustrated in Figure 4. Repartition-
ing is performed by splitting the given partition by co-factoring the entire state
space based on one or more suitable, newly calculated, splitting choices until
the blowup has been ameliorated. Initially, the partitioning is done using one
splitting variable. To prevent excessive overhead in the new splitting variable
selection, they are obtained by recalculating the cost of only the top few choices
provided by the partitioning variable selection method discussed before. At this
point, each new partition is checked to see whether the blowup has subsided.
If not, repartitioning is recursively performed on that partition. A threshold on
maximum number partitions is kept to prohibit the method to produce expo-
nential number of partitions.

DynamicPartition(basis BDD F , partition i){
v := SelectPartitioningVars(F )
create partition i1 from i with v := 0
if (blowup in i1)

DynamicPartition(Fv:=0, i1)
create partition i2 from i with v := 1
if (blowup in i2)

DynamicPartition(Fv:=1, i2)
}

Fig. 4. Dynamic Partitioning

It must be noted that the variable selection algorithm ensures that superflu-
ous partitions are not created and that the ones created are somewhat balanced.
In practice this imposes a bound on how many partitions are actually created.

3.4 Partition Only Image: Local Partitioning

During each step of image computation, many steps of alternating composition
and conjunction are performed. Often it is found that the blowup in the BDD
sizes during such a micro-step of image computation is a temporary phenomenon
which eventually subsides by the time the image computation is completed. In
such a case the invocation of dynamic global repartitioning could create a large
number of partitions, whose BDD sizes become eventually very small. Hence, it
is advantageous to create these partitions locally only for that particular image
computation and then recombine them before the end of the image computation.
If local partitioning does not reduce the blowup, then dynamic global reparti-
tioning can be done. To create the local partitions, we cofactor using the ordered
list of splitting variables that was generated earlier. Figure 5 describes how this
is done.
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ComputeImage(TR, state set R, variable list L){
do {

one microstep of image
if (blowup) {

varList := top k vars from L
create partitions using varList
for (each new partition)

recursively do all remaining micro steps
}

}while(microsteps remain)
}

Fig. 5. Computing Image with Local partitioning

3.5 How to Order Partitions: Scheduling

In this section we describe our technique for state space traversal which schedules
partitions based on their difficulty of traversal. The goal of the scheduling is
to discover error states as early as possible in the state space traversal. The
expectation is that the probability of catching an error is higher as more of
the state space is covered. We characterize partitions in terms of how quickly
it has been possible to cover state space symbolically in that partition. This is
measured in terms of a cost for processing the partitions. The details of how
this cost is computed is described in the following. Once this characterization
of the level of difficulty is available, we schedule the partitions for processing in
ascending order of their costs. Thus, the state space can be explored in a way
that speeds up the rate at which new states are discovered. Notice that in the
“worst” case, this processes all the partitions and thus traverses the entire state
space if the design is correct

Scheduling Cost Metrics. We will now describe two metrics that are used
for assigning a scheduling cost for processing the partitions.

Density Based Scheduling: Similar to [14] we define the density of a partition
as the ratio of the number of reachable states discovered in that partition to the
size of the BDD representing the reachable states. It may be noted that large
function representation sizes, i.e. BDD sizes, are the most important bottleneck
in symbolic verification techniques. Thus, in the interest of greater and faster
state space coverage, it is advisable to first process partitions with a higher
density.

Time Based Scheduling: Note that each partition may require many fixed
point computations. Hence, another useful metric takes into account the time
required for the latest fixed point computation within each partition. The parti-
tion with faster fixed point computation is intuitively more attractive as it may
be more amenable to symbolic manipulation using BDDs. Therefore, it is ad-
vantageous to select partitions which have historically been known to take lesser
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time. In the above calculations the time spent in communicating either to or
from any partition was excluded.

The cost for processing a partition is the ratio of the time taken for the
most recent fixed point computation to the density of that partition. Intuitively,
this prioritizes partitions that are more amenable to symbolic traversal. In our
reachability algorithm (Figure 6), priority queues are used to schedule partitions
in increasing order of their cost.

Reachability(T , I) {
R := InitialPartitioning(T , I)
Initialize Priority Queues in Scheduler S;
do {

Get LFPList from S.LFPQueue
for each partition i in LFPList

Calculate LeastFixedPoint in i and update S
Get CommList from S.CommQueue
for each partition i in CommList

Communicate from i to all parts and update S
}until (No new state is added to R);

}

Fig. 6. Scheduling-based Reachability Algorithm

4 Addressing Instability in BDD-Based Verification

Instability in BDD based verification refers to the sensitivity of performance to
various parameters like the size of the clusters in the implicitly conjoined transi-
tion relation, the selection of variable reordering methods etc. It is observed that
a single choice seldom works uniformly for all cases and therefore, such parame-
ters need to be tweaked manually. The performance of BDD based methods can
vary widely and unexpectedly based on these settings.

In a partitioned scheme, there are an even greater number of specific choices
available for state space traversal. The degrees of freedom include the number of
partitions, when and whether to dynamically decompose partitions further, how
to schedule the image computations involving multiple partitions, etc. Hence, we
propose a trace-centric approach to parameter selection which can dynamically
fine-tune the partitioning choices and balance the various options available to a
BDD based method.

A small set of identical computations are separately executed, each using a
different choice of the various options. Each of these is referred to as a trace. The
length of a trace is how far it proceeded into the entire computation. A large
number of traces may lead to a high cost in overhead. Therefore, we elect to look
at just a few traces with orthogonal settings. These traces are only observed until
the size of the OBDDs exceeds a pre-determined threshold.

The traces are compared with one another on various factors, for e.g., the
blowup of OBDDs when performing the image operation, the number of image
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operations completed, number of states traversed, etc. The configuration for the
full run is adopted from that of the most efficient trace. Needless to say that if a
trace completes the reachability in the allowed space and time, no further com-
putation is required. We have found that even very simple dynamic examinations
can be dramatically effective in stabilizing the performance of BDDs.

Also, we find that the overhead of generating multiple traces is minor when
balanced against the savings. Even if graph size is reduced by a factor of 2 (in the
more efficient configuration), it proves to be important. This is because during
the reachability multiple reorderings are triggered, and even saving one large
reordering of 1 million node graph compensates calculation of 3 different traces
with maximum BDD threshold of 100k BDD nodes.

Decide best parameters

Trace 1 Trace 2

Scheduling

LFP Communication

LocalPartitioning

SelectPartitioningVars

GlobalDynamicRepartitioning

InitialPartitioning

Trace n. . .

Fig. 7. Trace-based Reachability Algorithm

5 The Complete Reachability Algorithm

The complete reachability algorithm is shown in Figure 7. The input to the reach-
ability algorithm is a transition relation T and initial states I. The algorithm
first picks a best parameter configuration by running a few short traces with
orthogonal settings. Then it runs the InitialPartitioning procedure described
in section 3.1. After this the algorithm performs POBDD-based state traversal
guided by the scheduling heuristics described in section 3.5. There are two im-
portant steps in the POBDD-based state traversal algorithm. The first one is
computing a fixed point (called LFP) inside a partition and the other one is to
compute image of a function in other partitions (called Communication from
one partition to other partitions). The scheduler selects the partition to process
next for the above operations. The scheduler implements two priority queues,
one for each of the above operations described. Each partition is assigned a cost
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described in section 3.5. The local partitioning described in section 3.4 and the
global dynamic repartitioning described in section 3.3 is enabled during the fixed
point and communication. The SelectPartitioningV ars heuristics described in
section 3.2 is called when partitioning is needed.

6 Experiments

Our implementation of the POBDD-data structure and algorithms uses VIS-2.0,
which is a state-of-the-art public domain BDD-based formal verification package.
We have chosen VIS for its Verilog support and its powerful OBDD-package
(i.e. CUDD [15]). As our techniques affect only the BDD-data structures and
algorithms, they can – with moderate effort – be implemented in other packages
as well. These techniques work with any method of image computation; for this
implementation, both OBDDs and POBDDs use the IWLS95 method.

We found that lazy sift reordering method works better for most cases. All
the experiments use lazy sift BDD reordering method.

Benchmarks
For experiments on reachability and invariant checking, we chose various public
domain circuits: the VIS-Verilog [17] benchmark suite and ISCAS89 benchmark
suite. We choose only invariant checking properties in VIS-Verilog benchmark
suite. For sake of brevity, results are omitted for the smaller examples and pre-
sented only on those circuits where VIS requires more than 250,000 BDD nodes.

Results
We compare the methodology proposed in this paper with three other ap-
proaches: the non-partitioned approach of VIS, the static partitioning approach
and our own partitioning approach without computation traces. We find that
the computation of small traces outperforms, sometimes significantly, all other
approaches.

Comparison vs. Non-partitioned Approach, Invariant Checking
Table 1 compares the non-partitioned approach of VIS with the proposed method
on the time and space needed to check invariant properties from the VIS-Verilog
benchmark suite. The time includes cpu time for simultaneous check of all prop-
erties of a given circuit. The memory required is measured in terms of the cu-
mulative peak live nodes for all BDDs that are maintained.

The first column shows the memory required when running VIS. The second
column lists the memory for our trace-centric partitioning method, and the next
column shows the corresponding space gain. In the runtime comparison, the
first column shows time taken by VIS in seconds. The second column lists the
effect of our improved partitioning method when combined with a trace-centric
approach. The last column shows the time gain of the trace centric partitioning
over VIS.
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Table 1. Comparison of OBDD-VIS with POBDD-VIS on VIS-benchmarks for all
circuits where VIS requires more than 250K BDD nodes (T/O = timeout = 1 day,
M/O = memout = 512MB). The time includes cpu time for simultaneous check of all
properties of a given circuit

Space (BDD nodes) Time (sec)
Vis Proposed Gain Vis Proposed Gain

palu 371K 7K 53.0 186 5 37.2
s1269b 2.6M 38K 68.4 1189 27 44.0
sp product 919K 70K 13.1 1299 440 3.0
FIFOs 975K 131K 7.4 1704 1521 1.1
vsaR 5.2M 1.3M 4.0 5281 2409 2.2
blackjack 3.2M 1.1M 2.9 16298 11739 1.4
ns3 4.7M 1.0M 4.7 18592 19093 1.0
am2910 11.7M 67K >174 M/O 222 >392
ball 18.8M 17K >1106 T/O 168 >518
spinner32 1.4M 248K > 5.6 T/O 335 >260
rotate32 827K 240K > 3.4 T/O 293 >297
vcrc32 8 20.5M 2.4M > 8.5 T/O 3871 >23
am2901 20.8M 2.9M > 7.2 T/O 20247 > 4.3
b12 4.2M 800K > 5.3 T/O T/O −
vsa16a 11.1M 4.8M > 2.3 T/O T/O −

Table 2. Comparison of OBDD-VIS with POBDD-VIS on ISCAS89 benchmark

Space (BDD nodes) Time (sec)
Vis Proposed Gain Vis Proposed Gain

s1269 2.4M 31K 77 2305 28 82
s3330 1.3M 263K 4.9 T/O 948 >92
prolog 976K 138K 7.1 T/O 592 >147
s4863 438K 264K 1.7 1382 1717 0.8

3.3M 1.7M 1.9 T/O T/O –
s1423 States covered 2e+10 1e+13 419

Time for 2.3e+10 states 87000 633 137

In both time as well as space, the trace-centric partitioning approach provides
dramatic gains. Our approach completes all circuits except two in the VIS Verilog
benchmark suite. Notably, it verified six circuits where the VIS failed to finish.
For some circuits such as palu, s1269b, am2910, ball , verification was completed
by the very first POBDD trace of 100k nodes. In most cases, there is an order
of magnitude or more improvement in both time as well as in space.

Comparison vs. Non-partitioned Approach, Reachability Analysis
In identical format, Table 2 compares our method with Vis-2.0 on formal reach-
ability analysis for some ISCAS89 benchmark circuits. The proposed POBDD
implementation works better in first three circuits. In s4863, the time required
in computing traces made the method slightly slower than VIS.
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Fig. 8. Comparison of Dynamic trace-centric and Static Partitioning Approaches on
all Large designs (time>1000s) of VIS-benchmarks. The actual runtime in seconds is
shown at the top of each bar

We also found that in s1423 our method covers more states than VIS does
in the same time. Also notice that the partitioned approach covers the same
number of states as VIS in a small fraction of the time required.

Comparison vs. Static Partitioning
Figure 8 compares the run time of our trace-centric POBDD method to the static
POBDD approach of [11]. The initial number of partitions for both methods
were kept identical to have a level playing field. The graph shows the normalized
runtimes by size of the bar. The actual runtime in seconds is shown at the top
of each bar. One can observe that the proposed method noticeably improves on
the static partitioning scheme for most of the circuits, especially when the time
taken is large. In once case that could not be completed by the static partitioning
approach, the current method is able to complete reachability.

Traces vs. No Traces
Table 3 compares proposed POBDD approach with and without traces. The
proposed POBDD with trace finishes one more circuit that the method without
trace. It has noticable improvements on three other circuits, viz., spinner32,
rotate32, vcrc32 8 . Table 3 shows that the partitioning methodology is definitely
improved by using short traces.

7 Conclusions

We have discussed an efficient methodology for improving difficult instances of
reachability based verification using the approach of state space partitioning.
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Table 3. Comparison of Proposed POBDD with trace and without trace on all designs
where VIS runs out of time or memory

Time (sec)
Vis Proposed Proposed

(without trace) (with trace)

am2910 M/O 222 222
ball T/O 168 168
spinner32 T/O 9305 335
rotate32 T/O 5537 293
vcrc32 8 T/O 51576 3871
am2901 T/O T/O 20247
b12 T/O T/O T/O
vsa16a T/O T/O T/O

We have investigated relevant problems posed in creating a partitioned data
structure during BDD-based verification, and provided efficient and practical
algorithms for the same.

We have also addressed the issue of instability in BDD-based approaches
where parameters are seldom found to work well uniformly. We developed a
trace-centric approach to selection of such parameters. The resulting method
dramatically improves the space and run time, often from one to three orders
of magnitude, on various public-domain benchmark circuits that are otherwise
known to be difficult.

It is found that methods based on a monolithic representation of the state
sets often encountered space explosion early on in the computation, after which
they could not make much progress due to memory limitations. However, the
trace-centric partitioning method scaled well, and could finish most circuits in
the VIS Verilog benchmark suite.
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