Error Detection Using BMC in a Parallel
Environment

Subramanian K. Iyer!, Jawahar Jain?, Mukul R. Prasad?, Debashis Sahoo?,
and Thomas Sidle?

! University of Texas at Austin, Austin, TX 78712, USA
2 Fujitsu Labs of America, Sunnyvale, CA 94085, USA
3 Stanford University, Stanford CA 94305, USA

Abstract. In this paper, we explore a parallelization of BMC based on
state space partitioning. The parallelization is accomplished by execut-
ing multiple instances of BMC independently from different seed states.
These seed states are deep states, selected from the reachable states in
different partitions. In this scheme, all processors work independently of
each other, thus it is suitable for scaling verification to a grid-like net-
work. Our experimental results demonstrate improvement over existing
approaches, and show that the method can scale to a large network.

1 Introduction

Satisfiability based Bounded Model Checking (SAT-BMC) [2] approaches are the
preferred method for detecting error states that are not very deep. However, these
techniques can become quite expensive when many time-frames are required to
be analyzed. BDD based approaches are better choices for those “deep cases”
where the image BDDs remain moderately small as constructing large BDDs for
many image steps can be very expensive. Thus the class of problems which may
require many steps of image analysis to detect the error, but where BDD sizes
grow large, remain an attractive research target.

Our approach is to create a method that can find various candidate deep
states which can be seeds from which SAT-BMC can be run in parallel to explore
the adjacent state space. Starting from such potential deep seed states, multiple
BMC runs may be able to reach further deep states, and locate errors, which
may be out of reach for existing methods.

Generating Seed States: For a few initial steps of reachability, rapid progress
can be made using BDDs. To control the size of BDDs using state space analysis
we use state-space partitioning [5]. Deep states provided from such local BFS
traversals can be used to provide initial seed states to subsequent BMC runs.
Since the BDD runtime is directly proportional to the size of the graphs, we
further limit the size of partitions using an under-approximation based method
on top of partitioned BDDs.

Using Seed States: We augment our ideas of combining Partitioning and BMC
by generating multiple instances of BMC and run each such case in parallel on

D. Borrione and W. Paul (Eds.): CHARME 2005, LNCS 3725, pp. 354-[358] 2005.
© IFIP International Federation for Information Processing 2005

Error Detection Using BMC in a Parallel Environment 355

a grid of computers. This idea looks even more attractive when we consider
that large computing grids are slowly becoming available in many computing
environments [I].

For a detailed description of background, survey of related work, and expla-
nation of terminology, the reader may refer to the full version of this paper. [4]

2 Algorithm

We believe there are two key ideas for deep exploration. The first is to go
deep using BDDs at the expense of completeness, by ensuring that BDD sizes
remain tractable. This is accomplished by the use of partitioning and under-
approximation. The second idea is starting multiple BMC runs, one from each
seed. To keep the runtime practical we make these runs in parallel by using the
computing power of a grid. This is a non-conventional way of parallelizing BMC.
For the circuits where the BDD based exploration is able to build the transi-
tion relation cheaply our method appears to overcome the main shortcoming of
classical SAT-BMC which is its inability to perform deep state exploration.
To summarize, our algorithm has following two stages:

1. Generate deep seed-states using partitioning and approximation techniques
2. Distribute seeds on the grid focussing on minimizing unnecessary runs.

Generate Deep Seeds: We perform a full traversal of the state space by parti-
tioning the transition relation, as well as the computed sets of states so that both
the graphs and associated calculations remain tractable. When the BDD calcu-
lations are no longer manageable, we perform successive under-approximations.
At each step of image computation, we use a subset of the actual set of states.
Such massive under-approximation may result in successive traversal not always
leading to a deeper state. However, probabilistically speaking, if the number of
states in any computed image set is more than the sum in the previous steps, as
is often the case, then there is a high probability that with successive application
of “smaller” image function obtained from a partition of the transition relations,
most nodes in our path of deep-traversal will indeed be deep.

Parallel Seed SAT: In order to determine the initial seed states for SAT, we use
the following two approaches: Firstly, a small number of BDD based partitions
are explored fully and CNF clauses are written out at regular intervals, say every
5 steps. Alternatively, a large number of partitions are explored very rapidly
with under-approximation, and the resulting deep states are used to seed SAT.
By making multiple BMC runs, starting from various points along the state
traversal, we can ensure that at least a subset of the BMC executions start from
a deep state. Since all BMC runs can be made in parallel so this leads to a
non-traditional method of parallelizing BMC.

The Proposed Algorithm:

1. Partition reach: Use state partitioning in reachability to get different and
divergent paths exploring state space.

356 S.K. Iyer et al.

Fig. 1. Seeding multiple SAT-BMC runs from POBDD reachability

2. Approx Partition reach: Do reachability analysis with under-
approximation — during each image computation, pick a subset of the
newly found reachable states and add it to reachable set in order to avoid
BDD blowup problems.

3. Generate seed: At regular intervals, whenever a threshold is crossed, store
the seeds and pass it to a new instance of the SAT solver.

4. Start Seeded SAT: From each of these seeds, run an instance of SAT-based
BMC up to a small enough depth.

5. Run in Parallel: Run one SAT instance on each machine of the grid.

6. Termination condition: Allow BDD exploration and all SAT explorations
to continue in parallel until bug is seen or timeout is reached.

3 Results

In this section, we present our experimental results on some industrial circuits.
Several of these properties are deep and pose some difficulty for SAT-BMC
as well as simulation based methods. The experiments are run on a grid of
computers that include up to 100 independent Xeon CPUs (1.5 to 2.3 GHz)
running linux. We use an in-house grid middle-ware, CyberGrip [1], developed
at Fujitsu Labs Limited, Japan, for managing jobs executed on the grid. Our
program is implemented on top of VIS-2.0 and uses CUDD BDD package and
zchaff SAT-solver. The POBDD algorithm is run on a single processor but the
CNF files generated are transfered to different nodes on the grid where a BMC
run is fired in parallel.

Details of Experiments: Random simulation, using VIS-2.0 upto 100,000 steps
is unable to find a bug in any of the circuits in the benchmark. We perform
simulation to find deep states and seed BMC from there. This is similar to the
approach of [3], except that we use a different random seed for each simulation
depth. For each circuit, we run simulation, in steps of 1,000 from 2,000 to 10,000.
When the depth is reached, we pick the state reached at the end of the simulation
and seed SAT from there.

Error Detection Using BMC in a Parallel Environment 357
Table 1. Comparison of the time taken in seconds by various approaches

Existing Proposed

Num. Error Total Time (sec) Time (sec) Num.
Ckt latches Depth BDD POBDD BMC Sim Sim/BMC Seed BMC Total CPU
bl 125 59 7 3.2 T/O NB 167 32 N/A 3.2 1
b2 70 8 34 2 T/ONB 115 2 N/A 2 1
b3 66 23 1.9 1.3 T/O NB 268 1.3 N/A 1.3 1
b4 66 59 1.9 1.3 T/O NB 3097 1.3 N/A 1.3 1
b5 170 36 T/O T/O T/O NB 2758 27 36 63 9
b6 201 29 3148 2857 T/O NB 1407 156 20 176 3
b7 123 60 258 976 T/O NB T/O 35 429 464 14
bs 169 23 T/O T/O T/O NB T/O 198 55 253 28
b9 148 2r T/O T/O T/O NB T/O 280 1580 1860 70

“T/0O” is a timeout of 2 hrs, “NB” means no bug found.

Table [[shows the time taken by different methods: Existing approaches are
invariant checking using BDDs and POBDDs; SAT-BMC; simulation to 5,000
steps and an application of SAT solver after 5,000 steps. The last four columns of
Table [Il shows the details of time spent by the proposed method: the time taken
for (a) POBDD based reachability to discover the seed state, (b) the SAT-solver
to find the bug from there, (c) the total time and (d) the number of CPUs of
the grid that are actually used. We allow each method to run for 2 hours. The
results for all the methods are shown in table[Il Note that the proposed method
is the only one that is able to find the error in benchmarks b8 and b9.

4 Conclusions

Based upon our analysis of the experimental results, we believe that the proposed
hybrid method has various benefits. It is computationally inexpensive in terms
of overhead and an alternate way of parallelizing SAT-based BMC — each of
many processors can execute a BMC from a different set of initial states. The
only data that is passed over the network is at the very beginning, after that
no synchronization is required, until termination. Such parallelization has no
interdependence at all, and can therefore very effectively utilize a number of
processors in a large grid, without creating communication overhead between
the processors. This method also effectively exploits the advantage of symbolic
BDD based search as well as SAT. If there are a large number of partitions or if
certain partitions are difficult, performing cross-over images between them can
be difficult, and this may be the bottleneck in getting to the error. This can be
overcome by SAT based BMC, which is “locally complete” from its originating
point and does not compute sets of states.

Although a very large grid was available, in typical experiments only a
small number of CPUs were used. This suggests significant scope to improve
the quality of results and possibility to tackle larger problems with further re-
search.

358 S.K. Iyer et al.

References

[1] Akira Asato and Yoshimasa Kadooka. Grid Middleware for Effectively Utilizing
Computing Resources: CyberGRIP. In Fujitsu Scientific and Technical Journal,
volume 40, pages 261268, 2004.

[2] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded Model
Checking Using Satisfiability Solving. Formal Methods in System Design, 19(1):7—
34, July 2001. Kluwer Academic Publishers.

[3] Pei-Hsin Ho, Thomas Shiple, Kevin Harer, James Kukula, Robert Damiano, Valeria
Bertacco, Jerry Taylor, and Jiang Long. Smart Simulation Using Collaborative For-
mal and Simulation Engines. In Proc. of the IEEE/ACM International Conference
on Computer-Aided Design, pages 120-126, November 2000.

[4] Subramanian Iyer, Jawahar Jain, Mukul Prasad, Debashis Sahoo, and Thomas
Sidle. Error Detection using BMC in a Parallel Environment. In Technical Report,
Department of Computer Sciences, University of Texas at Austin, 2005.

[5] Debashis Sahoo, Subramanian Iyer, Jawahar Jain, Christian Stangier, Amit
Narayan, David L. Dill, and E. Allen Emerson. A Partitioning Methodology for
BDD-based Verification. In Formal Methods in Computer-Aided Design, volume
3312 of Lecture Notes in Computer Science, pages 399-413. Springer-Verlag, Janu-
ary 2004.

	Introduction
	Algorithm
	Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

