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Implication Networks from Large Gene-expression Dasets

Abstract

We present a new algorithm for building Boolean netwarsfvery large amounts of
gene expression data. The resulting networks includentpsymmetric relationships
between genes, such as co-expression, but also asyomrakttions that represent if-then
rules. The approach is conceptually simple and fastgmthat it can build a complete
gene network using 3 billion gene pairs with more than 9,%pfession values per gene-
pair in less than 3 hours on an ordinary office compiite.algorithm was applied to
publicly available data from thousands of microarrayshtanans, mice, and fruit flies
(for a total of 365 million Affymetrix probeset expressiemels). The resulting network
consists of hundreds of millions of relationships betwgmmes, and contains biologically
meaningful information about gender differences, tissfierdnces, development,
differentiation and co-expression. We also examifegio@ships that are conserved
between humans, mice, and fruit flies. The full Bawl relationships are available for
exploration ahttp://gourd.stanford.edu/~sahoo/recomb07/

Keywords: Boolean Network/Microarray/Co-expression nekiRair-wise gene
expression/Correlation/Co-regulation/Gene regulatotyork

Extended Synopsis

Introduction

A large and exponentially growing volume of gene expresdaia from microarrays is
now available publicly. Since the quantity of data froouad the world dwarfs the
output of any individual laboratory, there are opportusitee data mining that can yield
insights that would not be apparent from smaller, lesssk data sets. Consequently,
there have been many efforts to extract large netwafrkedationships from large
amounts of gene expression data. Almost all of this wonstructs networks of pairwise
relationships between genes, indicating that the geresoeexpressed (Allocas al.
2004; Arkin and Ross 1995; Jordetral. 2004, Leeet al. 2004; Tavazoiet al. 1999).
Co-expression is a symmetric relationship (if A isted to B, then B is related to A),
such as correlation.

This paper describes a new algorithm for building a Boatedwork from large amounts
of microarray data, and describes some of the propatithe resulting network. The
algorithm classifies the expression level of each geneach array as “low” or “high”
relative to a threshold, and finds all Boolean relaioms between pairs of genes,
including not only symmetric relationships capturing co-exprasdut also “if-then”
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relationships (called implications) which are asymmefar example, a relationship
could say “if gene A’s expression level is high, thenegBis expression level is almost
always low (more concisely, “A high implies B low” &k high=B low”). It is

important to understand that an implication does not nacglsenply causality. Instead,
it is an empirically observed invariant on the expasstvels of two genes. A network
of implications is alirected graph, which connects nodes with arrqgwsstead of the
more commonndirected graphs used for many biological networks

This approach is conceptually simple. The relationshipsrawitive — they are
immediately evident upon inspection of a scatterplohefdata points of expression
levels for the two related genes, and are thus conhpletamsparent to biologists, unlike
some approaches, which find relationships that can be aificellt for users to
interpret.

Symmetric relationships are implications in both diee®. Genes A and B are strongly
correlated, in general, when A higtB high and A low=B low. In this case, A and B
are said to bequivalent. A second kind of symmetric relation occurs when Ak

low and A low=B high, the expression levels of A and B are usuallyngfly negatively
correlated, and A and B are said toopposite. Implications in one direction only are
calledasymmetric. Implications capture many more significant relatibesveen pairs of
genes than correlation. In other words, there mayJagyasignificant Boolean
implication between genes whose expression is verklwearrelated. There are six
possible Boolean relationships: two symmetric (equiteded opposite) and four
asymmetric (low= low, low = high, high= low, high= high).

Boolean networks were constructed from 4,787 publicly availaffymetrix U133 Plus
2.0 human, 2,154 Affymetrix mouse 430 2.0, and 450 Affymetrix Drosapleihome 1
arrays from Gene Expression Omnibus (Edgat. 2002). All the datasets were
normalized using the RMA algorithm (Irizareyal. 2003). There are 208 million, 336
million and 17 million Boolean relationships in humamuse and fruit fly respectively.
Additionally, 4 million Boolean relationships are congsl in human and mouse and
41,260 Boolean relationships are conserved in human, moddeud fly. The algorithm
is fast enough to scale to large volumes of data. Queitdm that builds a complete
gene network using 54,677x54,677 gene pairs with more than 9,500 expredges
per gene-pair in less than 3 hours. The Boolean relaijpnare available for exploration
at http://gourd.stanford.edu/~sahoo/recomb07/

The relationships in the resulting network are oftendgiclal meaningful. Differences
associated with gender and tissue-type is readily app#&telattionships between genes
that are active only during specific developmental or diffgation stages are also
evident. Large groups of equivalent genes associated wittethcycle appear in the
network for each species. Highly conserved relationsdr@®nriched with the cell cycle
and central nervous system specific genes.
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Results
Boolean relationships are present in gene expression microay data.

The two symmetric Boolean relationships corresportdvtosparse quadrants in a
scatterplot, as described in the materials and metlsatiss. First, the low-high and
high-low quadrant can be sparse as shown in Figure lif&@h whows that CCNB2 and
BUB1B are equivalent. Highly positively correlated geaesalmost always equivalent.
Alternatively, the low-low and high-high quadrants carsparse, as shown in Figure
1(d), which shows that EED and XTP7 are opposite.. Negjatcorrelated genes are
often opposite. Notice that it is not possible to hasth bhe low-low and high-low
guadrants be sparse because that would require the secerit gpenalways low;
similarly, it is not possible for the low-high and ldew quadrants both be sparse.

There are four possible asymmetric Boolean relatiosghighich correspond to one
sparse quadrant. Figure 1(b) shows where the quadrant foPgé&#C low and gene
CD19 high is sparse so PTPRC e¢D19 low. Figure 1(c) shows that XIST high
—=RPS4Y1 low (this relationship was previously pointed oyttaiper describing the
CELSIUS database of microarray data ([eagl. 2007), while annotating microarrays
with male and female). Figure 1(e) shows FAM60A4eINUAK1 high. In this case,
when FAMG0A expression level is low, NUAK1 expressievel is high, but when
FAMG60A expression level is high, NUAK1 expression lege¢venly distributed
between high and low. Finally, Figure 1(f) shows that.@&1 high=SPARC high. This
relationship is complex, since it can be viewed as abgmation of multiple kinds of
relationships including linear and constant. However, Boodewlysis discovers the
simple logical implication: COL3A1 highSPARC high.

Notice that for each of the above Boolean relationdihipre is always eontrapositive
Boolean relationship that holds. For example, PTPRCI@®19 low so CD19 high
PTPRC high. Similarly, XIST high-RPS4Y1 low, so RPS4Y1 highXIST low,
FAMG60A low=NUAK1 high so NUAK1 low=FAMG60A high and COL3AL1 high>
SPARC high so SPARC low COL3AL low.

A large number of Boolean relationships exist in gene expssion data.

A very large number of Boolean relationships were founaicroarray data for
individual species. There are 208 million implicationshiea human dataset, even with a
stringent requirement for significance (a permutationyiedtls a false discovery rate
(FDR) of 10%). The mouse dataset has 336 million implications (FOBX19°), and the
fruit fly dataset has 17 million implications (FDR = 658)00f the 208 million
implications in the human dataset, 128 million are fidgw, 38 million are low=low,

38 million are higk>high, 2 million are lowshigh, 1.6 million relations are equivalences
and 0.4 million are opposite. Table 1 summarizes the nuafli&oolean relationships
found in each dataset. In all cases, the most conmetationships are the highlow

type, and the opposite relations are the most uncomfA®ecan be seen from Table 1, in
the human dataset 1% of the total Boolean relationstng@symmetric, while the
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remaining 99% are asymmetric. Similarly, in the mousas#tl.4% of the total Boolean
relationships are symmetric, and 98.6% are asymmetricelenin fruit fly 12% of the
Boolean relationships are symmetric. The number oHdow relationships is the same
as the number of highhigh relationships because of contrapositives.

Asymmetric Boolean relationships are far more numerous thaisymmetric
relationships.

Discovery of asymmetric Boolean relationships is oinda@® novelties of Boolean
analysis, as they have not been explored in th@atiee thoroughly. Our analysis
discovers a large number of asymmetric Boolean ralships (low=high, high=Ilow,
low=low and highk=high) compared to symmetric Boolean relationships (equitalesh
opposite).

Networks based on correlation of gene expression woillli fenclude these asymmetric
relations. 98.8% of the asymmetric Boolean relatiorsshipthe human CD genes have
correlation coefficients ranging from —0.65 to 0.65. Femtlas expected most of the
low=-high and high>low relationships have negative correlation coeffitseihe
low=-high relationships have correlation coefficients fron55Go 0 and the higklow
relationships have correlation coefficients from —0.68.85 as shown in Figure 2(f) and
Figure 2(c) respectively.

Low=low and high=high have mostly positive correlation coefficientenh —0.15 to
0.95, as shown in Figure 2(b) and Figure 2(g). (They havelgsamme distribution of
correlation coefficients because of contrapositiv8sme of these relationships have
very high correlation coefficients; for example at@nships with correlation coefficient
0.933 and 0.7963 are shown in Figure 2(h) and Figure 2(i).

Boolean equivalences compares well to correlation-based approashe

In order to compare the properties of Boolean netwarksdre common correlation-
based networks, both types of networks were construcsed lm human CD antigen
genes. These genes were chosen as a relatively smalbherent subset of biologically
interesting genes. A complete correlation-based n&taohuman CD genes was
computed as described in Materials and Methods.

Figure 2 shows histograms of the Boolean relationshipsredbect to the Pearson’s
correlation coefficients. As can be seen from tgare, the number of equivalences from
the Boolean network that are also in the correlatidwaork increases linearly with the
correlation coefficient. Gene pairs that have no Baolrelationships also have low
correlation coefficients around zero. There are atanbal number of Boolean
relationships, for which the correlation coefficiemsimall. These pairings cannot be
identified by a pure correlation-based approach. Four exampsesitter plots are shown
in Figure 2 (bottom row) to demonstrate the differencéwdxn Boolean relationships
and correlation-based relationships.
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Boolean networks are not scale free.

It has often been observed that other biological netwankscale-free (Barabasi and
Albert 1999; Barabasi and Oltvai 2004; Bretal. 2002; Featherstone and Broadie 2002;
Jeonget al. 2000; Jeongt al. 2001), to study the global properties of Boolean network,
we plotted frequency of the probesets against their ddgramber of Boolean
relationships) as shown in Figure 3. Each log-log plot shemthe horizontal axis the
degree, while the vertical axis shows the number of prebéds® have the number of
relationships to other probesets. The top row in Figui@sponds to the human
Boolean network. From left to right are shown theltBtaolean relationships, only
symmetric Boolean relationships, and only asymmetric &ootelationships. These
plots are comparable to the Boolean networks for mongédrait fly (as shown in
Supplementary Figure 1). The middle row in Figure 3 cormedpto the conserved
Boolean network between human and mouse, constructethtibnships that are present
in both human and mouse. Finally, the bottom rowigufe 3 shows the conserved
Boolean network between human, mouse and fruit flycaksbe seen from the figures,
the plots for total Boolean relationships' ¢blumn in Figure 3) are non-linear. However,
the plots for symmetric and asymmetric Boolean relatigos (2 and 3 columns in
Figure 3) are close to linear. Interestingly, althoughroight anticipate that a network,
which has not been transitively reduced (see matenalsnethods), would have more
nodes with high degree (relative to a power law behgwer found the opposite. The
Boolean network described here scales below a powert laigladegree.

Boolean relationships are highly conserved across species.

A network can be constructed consisting of the relatibat hold between orthologous
genes in multiple species. The network of relationshigsate conserved in humans and
mice network has a total of 3.2 million Boolean relatluips consisting of 8,000
low=-high, 2 million high=low, 0.5 million low=low, 0.5 million high=high, 10,814
equivalent and 94 opposite implications. Applying the sara¢ysis to randomized
human and mouse datasets yieldedonserved Boolean relationships, for an estimated
false discovery rate of less than 3.1e-7. An analogausgone of implications conserved
across human, mouse and fruit fly has 41,260 Booleanmeships: 24,544 highlow,
8,060 low=low, 8,060 highk=>high and 596 equivalent. The false discovery rate for the
conserved human, mouse and fruit fly Boolean netwoldsis than 2.4e-5.

Figure 4 shows three examples of highly conserved Booddationships from human,
mouse and fruit fly. The first row in Figure 4 is an epdarof equivalent relationships
that are conserved in all three species. The middldattdm rows show highly
conserved highvlow and high=high relationships.

The connected components of the network of equivaéationships that were
conserved in human, mouse, and fruit fly were examinedrtaected component of an
undirected graph is a set of genes where there is dg@tieen every pair of genes). The
algorithm found 13 different connected components. Howévere are two distinct

large components. The largest component has 178 genesngckldB1B, EZH2,
CCNAZ2, CCNB2 and FENL1. The genes belong to this componestamalyzed using
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DAVID functional annotation tools (Denngs al. 2003; Hosaclet al. 2003). The
functional annotation analysis indicates DNA replmai2.03e-14, 19 genes) and cell
cycle process (1.06e-13, 30 genes) as significant interestiegoggology annotations

for the largest component. The second component has 82 gih transport (2.55e-08,
16 genes) and synaptic transmission (1.04e-08, 8 genes) d&saigrgene ontology
annotations. Further, the functional annotation aralysicovers proteasome and cell
cycle as significant KEGG pathways for the first comgyat. The second component was
enriched for calcium signaling pathway in KEGG datab&@ke.list of genes for the
components and the DAVID functional annotation resaésincluded in the
supplementary information.

Boolean network computation is fast.

The total computation time to construct the networkgdlications for the human dataset
was 2.5 hours on a 2Ghz computer with 8GB of memory. Th&ah dataset consisted of
a total of 54,677 distinct probesets from 4,787 microarrays.computation time for the
mouse dataset was 1.6 hours. This data set has 45,101 praipes2{$54 microarrays.
Finally, the computation time for fruit fly datasevnsisting of 14,010 probesets and 450
microarrays, was 2 minutes.

Discussion

Boolean analysis is simple, fast and efficient.

Boolean analysis provides a simple intuitive charazaéion of relationships between
pairs of genes. A threshold is determined to classifydod high values, after fitting a
step function to the sorted gene expression levels tisngtepMiner algorithm (Sahoo
et al. 2007), which sets the threshold near the mean of unifadisisibuted sets, and
otherwise places it at the largest gap between clusteedatively low and high values.
The Boolean analysis algorithm finds a large numb&uoafiean implications even if the
gene expression values are not Boolean. In many caseslahionships are more
complicated than Boolean implication. However, itynba useful to view them as
Boolean implications because these are easy to matepéllso, Boolean relationships
are fast to compute because bit vector operations stredmpared to floating point
operations. The computation time for the human datese®.5 hours, whereas
correlation coefficient computation might take mutiplays in a single computer.

Boolean equivalence vs. correlation-based relationship

As shown in Figure 2, gene pairs with high correlatiogffacent are more likely to be
equivalent in the Boolean analysis. However, theeesaceptions, as shown in the plot
between COL3A1 and COL1ALl. Here, the correlation eoiefit (0.933) is extremely
high and the relationship is expected to be equivalent. #ewthere are many
microarrays where the expression levels for COL3A1igh and COL1A1 is low.
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Therefore, Boolean analysis concludes this relationshpCds3A1 low= COL1A1

low. However, there is a very strong linear compoinette scatter plot, which a
correlation-based relationship can distinguish. BottBibelean and the correlation-
based characterization may be important biologicallgifferent contexts. Most methods
to compute correlation-based networks use a threshold ref tinan 0.7 on the correlation
coefficient (Jordamt al. 2004; Leeet al. 2004; Tsaparaet al. 2006). Figure 2 shows that
a very large proportions of asymmetric Boolean refstiops have correlation coefficient
less than 0.65. Note that 20% of the symmetric Booldatiaeships have correlation
coefficient less than 0.65. Correlation-based networlsmals these relationships,
which might be biologically relevant. Figure 2 showsaample scatter plot between
LAIR1 and WAS with correlation coefficient 0.5158 that @gproach identifies as an
equivalence. Similarly, TLR2 and ITGAM have a correatcoefficient of 0.7 and are
considered equivalent. However, the plot between VPR&RI IGLL1 shows a higher
correlation coefficient than 0.7, and we infer an asytnmBoolean relationship
(VPREBL1 high= IGLL1 high).

Asymmetric Boolean relationships

As can be seen, asymmetric Boolean relationships avalpnt in the Boolean analysis.
Moreover, a huge percentage of these relationships are-lugh One can imagine that
if there weren mutually exclusively expressed genes, there wouldat@e 1) high=low
relationships. Furthermore, tissue specific genes aga aftutually exclusively expressed
and could be a major contributor of the higlow relationships. Additionally,
asymmetric relationships have low correlation coeffitias expected because Pearson’s
correlation is symmetric, suggesting that correlatiosedapproaches identify them
poorly. Interestingly, although one might imagine th#fedent probesets for the same
gene should have positive symmetric relationships, wettiatdthey have asymmetric
Boolean relationships consistent with previous findingsw average correlation among
them (Liao and Zhang 2006). Therefore, Boolean analysistrbghelpful in pointing

out important differences among different probesetshi®isame gene. We believe that
asymmetric Boolean relationships are rich in importésibgical relationships and might
be helpful in generating new biological hypotheses ifuh&e. We have shown that
large numbers of asymmetric relationships are highly coedeand they follow some of
the currently known biological phenomena.

Highly conserved Boolean relationships

A conserved Boolean relationship is one that hold&édmt orthologous genes across
diverse species. There are many symmetric and asymma#iionships that are
conserved in human, mouse and fruit fly. Figure 4 shovegtéxamples. The top row in
Figure 4 shows that CCNB2 (CycB in fruitfly) and BUB1i @&quivalent in all three
species. (In this case, a network of correlated genesivatad be able to find these
conserved relationships because they are very welllatatein each species.). Finding
this relationship becomes feasible because of thaezftig of the Boolean analysis.

It is very well known that both CCNB2 and BUB1B ar&ated to cell cycle (Bolognese
et al. 1999; Davenporgt al. 1999). It might not be surprising to see that they arg ver
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highly correlated in all three species. However, gugrising to note that only a small
number of currently known cell cycle genes have thipgrty. The bottom row in Figure
4 shows an asymmetric relationship between two verykmelvn cell cycle regulators,
E2F2 and PCNA (lvey-Hoylet al. 1993; Mathewst al. 1984; Miyachiet al. 1978). The
middle row in Figure 4 shows an asymmetric relationshap ithconserved in all three
species. GABRBL1 is a receptor to an inhibitory neurotratsmit vertebrate brain
(Kirknesset al. 1991). It is surprising to see that the relationship betvasBRB1 and
BUBIB is conserved in vertebrate and arthropods (fig)it This relationship might
suggest that cells expressing this particular neurotransaitdess likely to be
proliferating. To our knowledge, this is the first algorittirat finds asymmetric Boolean
relationships that are conserved across species asedagvertebrates and arthropods.

Boolean relationships show gender differences, tissue @fénces, development,
differentiation and co-expression.

Boolean relationships represent a wide variety of atigr&nown biological phenomena.
The generated networks contain relationships that shodegéifferences, development,
differentiation, tissue difference and co-expressidre 3Jcatter plot between XIST and
RPS4Y1 in Figure 5(a) is an example of an asymmetricdBmolelationship that shows
gender difference. RPS4Y1 is expressed only in certaintialees because it is present
solely on the Y chromosome (Wellgral. 1995) and XIST is normally expressed only in
female tissues (Brockdorét al. 1991; Brownret al. 1991), so RPS4Y1 and XIST are
rarely expressed together on the same array. Hdmceglationships RPS4Y1 high

XIST low and XIST high= RPS4Y1 low hold. Inthe network, RPS4Y1 is equivalent t
four other genes, all of which are Y-linked. RPS4Y14ewACPP low (Figure 5(b)),
KLK2 low, and KLK3 (PSA) low, all of which are prostaspecific (Sharieét al. 1994).
Some of the relationships capture the hierarchy of tisges. For example, GABRBL1 is
specific to the central nervous system (ReitAl. 2006), and ACPP high> GABRB1

low (Figure 5(c)), because the prostate is distinct flaenCNS. On the other hand,
GABRAG is primarily expressed in the cerebellum, andse®that GABRB1 low
GABRAG low, because the cerebellum is part of the @N&re literally, if a tissue
sample is not part of the CNS, it is also not pathefcerebellum).

To show an example of a Boolean relationship betweerdavelopmentally regulated
genes, we identify HOXD3 and HOXA13 as shown in Figure 3{@)XD3 and

HOXA13 have their evolutionary origin from fruit flyneennapedia (Antp) and
ultrabithorax (UBX) respectively (Carroll 1995). It waseatly discovered that HOXD3
and HOXAL13 are expressed in human proximal and distal sgpgctively (Rinret al.
2007), a pattern of expression, which is evolutionarily eoresd from fruit flies. The
human Boolean network indeed shows that high expressid®¥D3 and HOXA13 are
mutually exclusive (HOXD3 highk> HOXA13 low), which is consistent with the above
paper. (Contrary to the findings of that paper, this @tship is not highly conserved in
our analysis because the mouse and fruit fly orthalegwobes for the desired genes did
not have a good dynamic range in the dataset, for unkneasons.)
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Relationships between genes expressed during the proceerehtiation also appear
in the network. For example, a Boolean relationshigvbeh two key marker genes from
B cell differentiation, KIT and CD19 as shown in Figg(e). KIT is a hematopoietic
stem cell marker (Ikutet al. 1991) and CD19 is a well-known B cell differentiation
marker (Stamenkovic and Seed 1988). Our algorithm discoverkithand CD19 are
rarely expressed together and thus the Boolean relajon€id19 high= KIT low and
KIT high = CD19 low.

From inspecting the human network, it is clear thatiheais of genes are co-expressed
that are related to the cell cycle. Two such gene€,Zand CCNB2, are shown in
Figure 5(f).

The Boolean network is not scale free

As shown in Figure 3, the log-log plots between degresfiectedness, and frequency
is highly non-linear. For a scale free network we ekpee plot to show a linear power
law distribution (Barabasi and Albert 1999; Barabasi artda®2004; Bharet al. 2002;
Featherstone and Broadie 2002; Jeetra. 2000; Jeongt al. 2001). It has been shown
(Barabasi and Albert 1999) that the combination of contiadditions of nodes to a
network, together with the property that new connectayasmore likely to be made to a
highly connected node, naturally leads to power law behadmwvever, our Boolean
analysis found sub-power law scaling of number of noddsnespect to their degree.

Comparison with other approaches for building gene networks

Traditional analysis of a large microarray datasetafiegins with pairwise analysis of
genes. A large number of algorithms have been proposaetetdiologically relevant
gene pairs, presented in the form of a gene regulatbmprieor a co-expression
network (Alloccoet al. 2004; Arkin and Ross 1995; Jordaral. 2004; Leeet al. 2004;
Tavazoieet al. 1999). Most clustering algorithms (Chibal. 1998; Eiseret al. 1998;
Spellmanet al. 1998) also rely on pairwise gene expression analysphiS@ated
algorithms including, Bayesian analysis (Friedreaa. 2000; Friedman 2004; Lest al.
2006; Li and Chan 2004; Pe#ral. 2001; Segadt al. 2004; Segadt al. 2005; Segadt

al. 2001), Graphical Gaussian Models (Kishino and Waddell 2000; &céwad Strimmer
2005) and mutual information (Baseioal. 2005; Butte and Kohane 2000; Margodiral.
2006; Wanget al. 2005) have been employed to infer the underlying network gteuct
Most of the above approaches discover symmetricioatttips and require pairwise
gene expression analysis. The main drawback of the paigeise expression analysis is
the computation time required to investigate a large nuwibgene pairs. A massively
parallel grid-computing environment has been used to reducetiautation time
(Swainet al. 2005), but this approach demands costly machines. Boolesiarimds a
large number of asymmetric relationships and it is redftifast compared to most of the
above approaches.

Previously developed Boolean networks have only been applsdatiter sized datasets
(Guptaet al. 2007; Idekeet al. 2000; Kauffman 1971; Liang al. 1998; Pakt al. 2005;
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Shmulevich and Zhang 2002; Shmulevich and Kauffman 2004). FuBbelean
implication network similar to our network have been usegfobabilistic reasoning
(Liu and Desmarais 1997).

Large sized microarray datasets have been collectalyzad (Dayet al. 2007; Rhodes

et al. 2007) and applied to the study of human cancer (Hametakr2007). Boolean
analysis can potentially be applied to the above datasetgplore meaningful Boolean
relationships. Recently, in the CELSIUS database @aly 2007), a gene coexpression
network was built using a subset of 3600 probesets onlyeMenyit is feasible to apply
our Boolean analysis to the full dataset.

Comparison with previous approaches for building conserved geninteraction
network

Conservation across multiple species has been usefiétanore likely regulatory
relationships (Chalmed al. 2007; Sinhaet al. 2004; Stranckt al. 2007; Stuaret al.

2003; Tamadat al. 2005; Tiroshet al. 2006; Tsaparagt al. 2006; van Noorét al.

2003). Many of these algorithms suffer from the same cortipoéd bottleneck as
building co-expression networks or clustering. Moreoites, hard to detect conserved
pairs with low correlation coefficient, although theptmay be biologically meaningful,
as we will demonstrate. It is easy to perform consematnalysis on Boolean network,
which involves checking if the orthologous gene pairs hagesame Boolean
relationships, while other approaches require non-tpriababilistic measure of
conservation. Numerous studies use co-expression, wihidknguconserved gene-
interaction networks. An early study of this type (vasoN et al. 2003) improved the
accuracy of predicting functional gene interactions byggisonserved co-expression
betweenSaccharomyces cerevisiae andCaenorhabditis elegans. They used a correlation
coefficient threshold of 0.6. Subsequently, another st8tlyaftet al. 2003) identified
22,163 gene pairs from 3,182 DNA microarrays from humans, Wieems and yeast.
This study used a rank order statistic to compute a prodiabitneasure of the conserved
coexpression in multiple species. Further, Bayesmaftyais was combined with
conservation to build gene networks for yeast and human csihgycle data (Tamada
et al. 2005). Later studies focus on human and mouse to discavegreed gene
expression in brain (Stramtial. 2007) and gametogenesis (Chaleiell. 2007). None
of the above algorithms predicts conserved asymmetatiaeships. In addition to
symmetric relationships (equivalent and opposite), Bodeatysis is also capable of
discovering a large number of conserved asymmetric Baalelationships. Moreover,
Boolean analysis provides more transparent pair-wisgaddips (as the Boolean
relationships are directly visible in the scatter ptmtinpared to other approaches
described above.
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Materials and methods
Data collection and preprocessing

CEL files for 4,787 Affymetrix UL33Plus 2.0 human microas;a,154 Affymetrix 430
2.0 mouse arrays, and 450 Affymetrix Genome 1.0 Drosophiladeeveloaded from
NCBI's Gene Expression Omnibus (Edghal. 2002). These array types were chosen
because they are widely used, and because resultsliifenent arrays can be compared
more easily than results from two-channel arrayse datasets were normalized using
the standard RMA algorithm (Irizargg al. 2003); however, the available version of
RMA uses excessive amounts of primary memory when alaimg thousands of arrays,
so the program was re-written to increase memoryiefiity. Boolean expression levels
were assigned for each gene in each array, using thbdsg R) of the expression values
(Figure 6 illustrates this process). First, a thresh@d assigned to each gene using the
StepMiner algorithm (Sahoa al. 2007), which was originally designed to fit step
functions to time-course data. For this applicatibe,éxpression values for each gene
were ordered from low-to-high, and StepMiner was used #&orfgting step function to
the data that minimizes the differences between tteslfand measured values. This
approach places the step at the largest jump from laves@o high values (but only if
there are sufficiently many expression values on edehas the jump to provide
evidence that the jump is not due to noise), and sethriehold at the point where the
step crosses that original data (as shown in Figurén@he case where the gene
expression levels are evenly distributed from low to higé,threshold tends to be near
the mean expression level. If the assigned thresbold fiene is t, expression levels
abovet + 0.5 are classified as “high,” expression levels bdle@s are classified as
“low,” and values betweei—0.5 andi+0.5 are classified as “intermediate.” Whenever
more than 2/3 of the expression values of a gene wareiatermediate level of
expression, the gene was excluded from further analysigpdosufficient dynamic
range in the expression values.

Discovery of Boolean relationships

All pairs of features with sufficient dynamic ranger& analyzed to discover potential
Boolean relationships. There are six possible Bodlelationships between genes A and
B that are constructed from four possible Boolean icapibns: A low= B low, A low

= B high, A high= B low, and A high= B high. Each of the above implication is
detected by checking whether one of the four quadrante isdatter plot of Figure 6 is
significantly sparsely populated with points compared wighother quadrants
(intermediate values for A and B are ignored in thelysis). There are at most two
possible sparse quadrants because the thresholds alpaysteea reasonable number of
low and high expression levels for each gene. Each spasasiEant corresponds to an
implication. If A high= B high and A low= B low, A and B are considered to have
equivalent levels of Boolean expression. When A kigB low and A low= B high, A
and B are considered to have an opposite Boolean relaijiorin both of these cases,
two diagonally opposite quadrants are significantly sparsethier cases, where there is
only one sparse quadrant, the Boolean relationships be#vaad B have the same
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name as Boolean implications: A low B low, A low = B high, A high= B low, and
A high= B high. There are two tests that must succeed farthgonship between A
and B to be considered an implication. The followirgidere performed to check
whether the low-low quadrant is sparse that gives A4e\B high. First, the number of
expression values in the sparse quadrant must be sigtifitess than the number that
would be expected under an independence model, given détieealistribution of low
and high values for A and B. Specificallyaib, ao1, a10, @11 are the number of
expression values where A and B are low and low, lagdviagh, high and low, and high
and high, respectively, a threshold on the followingiia is performed to test whether
the low-low quadrant is sparse.

total = apg+ ap1+ arot a1

expected = (agot ao1) * (&t auo)/ total

observed = ag

(expected — observed)

datistic =
\/ expected

Second, the observed values in the sparse quadrantnaidered erroneous points and a
sparse quadrant must have a small number of erroneous. poimaximum likelihood
estimate of therror rate is computed as follows.

error rate = 1 il + oo
2 (200t ao1) (200t a10)

A second threshold on this error rate is performed torertbat the quadrant is really
sparse. If the above tests succeed, the low-low quadraeansidered sparse and
therefore, A low= B high is inferred. Similarly, the above tests apested for all other
guadrants. A threshold of 3 for the fissétistic and a threshold of 0.1 for tleeror rate
are used here to discover the Boolean relationshipsaodfeBn network (directed graph)
is built from the Boolean relationships, where noaesA high or A low for each gene A
and edges are Boolean implications. For example, therelirected edge from A low to
B high if there is a Boolean implication A low# B high. Boolean implications are
transitivee.g. whenever A low= B high and B high= C low, A low= C low.
Therefore, the Boolean network is almost transiyivddsed. A straightforward transitive
reduction algorithm, however, can be applied to reduceetweonk size.

Computation of False Discovery Rate

To compute the false discovery rate (Storey and Tibsh2@03), we permute randomly
the expression values for each gene independently. Tleemnathe Boolean analysis
described above to build a complete Boolean networkabbge analysis is repeated
twenty times to compute the average number of Booldatiorships in the randomized
data. The ratio of the average number of Booleaniwakttips in the randomized data to
the original data is considered the false discoveryafiiee Boolean analysis.
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Correlation network for human CD genes

Human CD (cluster of differentiation) genes weredele for comparison against a
correlation-based network. The set of genes includes 9§6naffix U133 Plus 2.0
human probesets. Pearson’s correlation coefficientsll 466,095 pairs of genes were
computed. Boolean analysis is also performed on this datanpare Boolean network
with the correlation-based network.

Discovery of conserved Boolean relationships

Mouse and fruit fly orthologs for human genes werecsetefrom the EUGene database
(Gilbert 2002). For each Boolean relationship in the hudsdaset, a conserved
relationship is detected if any of the mouse orthologhefirst human gene has a
significant Boolean relationship with another mouse odpalf the second human gene.
To find conserved Boolean relationships in all threeisgewe check if any of the fruit
fly orthologs of the first mouse gene has a signifi&oalean relationship with another
fruit fly orthologs of the second mouse gene for easiserved relationships in human
and mouse.

Connected component analysis

Human genes for the highly conserved relationships i@k species were selected for
the connected component analysis. An undirected grapltbw with the gene names as
nodes and the edges are from Boolean equivalent redafjsn Connected component
analysis was performed using a standard union-find algoriththeoandirected graph to
find clusters of genes that are connected together.
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Figure legends

Figure 1. Boolean relationshipsSix different types of Boolean relationships between
pairs of genes taken from the Affymetrix U133 Plus 2.0 hudaaset. Each point in the
scatter plot corresponds to a microarray experimergrevtihhe value for the x-axis is
gene expression for the x-axis gene and the value forabes is gene expression for the
y-axis gene. There are 4,787 points in each scatter(@)dEquivalent relationship
between CCNB2 and BUB1B. (b) PTPRC lewCD19 low. (c) XIST high= RPS4Y1
low. (d) Opposite relationship between EED and XTP7. fI60A low = NUAK1

high. (f) COL3A1 high= SPARC high.

Figure 2. Comparison of Boolean network with correlation-based ne/ork: On

human CD (clusters of differentiation) genes: that ghows the histogram of different
types of Boolean relationships. (a) Equivalent. (e) Oppo®) Low= Low. (c) High=
Low. (f) Low = High. (g) High= High. (d) No relationships. Example scatter plots of
gene pairs with their correlation coefficient. (h) IGGA1 low = COL1A1 low,
correlation coefficient = 0.933. This is an example olear asymmetric relationship
with very high correlation coefficient. (i) VPREBL1 higs> IGLL1 high, correlation
coefficient = 0.7963. This is an example of a clear asymmen@lationship with moderate
correlation coefficient. (j) TLR2 and ITGAM are equieat, correlation coefficient = 0.7.
This is an example of equivalent relationship with lowrelation coefficient. (k) LAIR1
and WAS are equivalent, correlation coefficient = 0.5168n example of equivalent
relationship with very low correlation coefficient.

Figure 3. Properties of Boolean networkiog-log plot of the histogram of the
probesets with respect to their number of Booleanioekstips. Human Boolean
network: (a) total, (b) symmetric, (c) asymmetric Bxol relationships. Conserved
human and mouse Boolean network: (d) total, () symmédrasymmetric Boolean
relationships. Conserved human, mouse and fruit fly @oohetwork: (g) total, (h)
symmetric, (i) asymmetric Boolean relationships.

Figure 4. Highly conserved Boolean relationshipOrthologous CCNB2 and BUB1B
equivalent relationships: (a) Bubl vs CycB in fruit fly) Bublb vs Ccnb2 in mouse, (c)
BUB1B vs CCNB2 in human. Orthologus BUB1B highGABRBL1 low: (d) Bubl vs
Lceh3 in fruit fly, (e) Bublb vs Gabrbl in mouse, (fyB1B vs GABRBL1 in human.
Orthologous E2F2> PCNA high: (g) E2f vs mus209 in fruit fly, (h) E2f1 vs Pcna in
mouse, (i) E2F2 vs PCNA in human.

Figure 5. Boolean relationships follow known biology(a) Gender difference, XIST
high= RPS4Y1 low, male is different from female. (b) Geniksue specific, RPS4Y1
low = ACPP low, only males have prostates. (c) Tissuerdifiee, ACPP high>
GABRBL low, prostate is different from brain. (d) Deagment, HOXDS3 high=
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HOXA13 low, anterior is different from posterior. @ijfferentiation, KIT high= CD19
low, Differentiated B Cell is different from HSC) €o0-expression, CDC2 vs CCNB2.

Figure 6. Boolean analysisThe expression levels of each probeset are sorted stregh
function is fitted (using StepMiner) to the sorted expia@s level w minimizes the square
error between the original and the fitted values. &gholdt is chosen, where the step
crosses the original data. The region betwe@® and+0.5 is classified as
“intermediate”, the region below0.5 is classified as “low” and the region ab®v@.5 is
classified as “high”. The examples show probesetsiorgenes CDH1 and CDC2. As
can be seen, CDH1 has a sharp rise between 6 and 9 &teéphiner algorithm was
able to assign a threshold in this region. CDC2, howeveery linear, and the
StepMiner algorithm assigns the threshold approximatelyanmiddle of the line. A
scatter plot is shown to illustrate the analysis.ngamnt in the scatter plot corresponds to
a microarray experiment, where the value for the x-8x@DC2 expression and the
value for the y-axis is CDH1 expression. Boolean amalgperformed on a pair of
probesets, which ignores all the points that lie initkermediate region and analyzes the
four quadrants of the scatter plot. Four asymmetricioglships (low= low, low =

high, high= low, high=> high) are discovered, each corresponds to exactly ongespa
guadrant in the scatter plot and two symmetric relatimss(equivalent and opposite) are
discovered each corresponds to two diagonally oppositeesgaadrants.

Table legends

Table 1: Number (in millions) of Boolean relationships in hman, mouse and fruit

fly datasets.The human dataset has 1% symmetric (equivalence + oppasd 99%
asymmetric (low= low + low = high + high= low + high= high) relationships of the
total Boolean relationships. The mouse dataset has 1 df#etyic (equivalence +
opposite) and 98.6% asymmetric (lewlow + low = high + high= low + high=

high) relationships of the total Boolean relationshigse fuit fly dataset has 12%
symmetric (equivalence + opposite) and 88% asymmetmcfolow + low = high +
high= low + high= high) relationships of the total Boolean relationships.



DRAFT — Please do not distribute

Figures

Figure 1. Boolean relationships
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Figure 3. Properties of Boolean network
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Figure 4. Highly conserved Boolean relationships
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Figure 5. Boolean relationship follows known biology
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Tables

Table 1: Number (in millions) of Boolean relationshipdiuman, mouse and fruit fly

datasets.
Dataset Total | Low | High Low High Equivalent| Opposite
implies | implies | implies | implies
High Low Low High
Human 208 2 128 38 38 1.6 0.4
Mouse 336 8 208 57.6 57.6 4.1 0.7
Fruit Fly 17 0.3 7.3 3.7 3.7 1.9 0.1
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Supplementary information

Figure 1. Properties of human mouse and fruit fly Boolean netarks: log-log plot of
the histogram of the probesets with respect to thember of Boolean relationships.
Human Boolean network: (a) Total, (b) symmetric,g&ymmetric Boolean relationships.
Mouse Boolean network: (d) Total, (e) symmetric, §iyrametric Boolean relationships.
Fruit fly Boolean network: (g) Total, (h) symmetr{g,asymmetric Boolean
relationships.
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Following files can be accessedhdtp://gourd.stanford.edu/~sahoo/recomb07/

File 1. Connected component analysig he cluster of genes can be found in each line as
tab separated HUGO gene symbol name.

File 2. DAVID functional annotation (GO Analysis) on the largest cluster

File 3. DAVID functional annotation (GO Analysis) on the seand largest cluster
File 4. DAVID functional annotation (KEGG) on the largestcluster

File 5. DAVID functional annotation (KEGG) on the secondargest cluster



