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Implication Networks from Large Gene-expression Datasets 

Abstract 

We present a new algorithm for building Boolean networks from very large amounts of 
gene expression data. The resulting networks include not only symmetric relationships 
between genes, such as co-expression, but also asymmetric relations that represent if-then 
rules.  The approach is conceptually simple and fast enough that it can build a complete 
gene network using 3 billion gene pairs with more than 9,500 expression values per gene-
pair in less than 3 hours on an ordinary office computer. The algorithm was applied to 
publicly available data from thousands of microarrays for humans, mice, and fruit flies 
(for a total of 365 million Affymetrix probeset expression levels). The resulting network 
consists of hundreds of millions of relationships between genes, and contains biologically 
meaningful information about gender differences, tissue differences, development, 
differentiation and co-expression. We also examine relationships that are conserved 
between humans, mice, and fruit flies.  The full Boolean relationships are available for 
exploration at http://gourd.stanford.edu/~sahoo/recomb07/. 
 
 
Keywords: Boolean Network/Microarray/Co-expression network/Pair-wise gene 
expression/Correlation/Co-regulation/Gene regulatory network 
 

Extended Synopsis 

 

Introduction 

A large and exponentially growing volume of gene expression data from microarrays is 
now available publicly. Since the quantity of data from around the world dwarfs the 
output of any individual laboratory, there are opportunities for data mining that can yield 
insights that would not be apparent from smaller, less diverse data sets. Consequently, 
there have been many efforts to extract large networks of relationships from large 
amounts of gene expression data. Almost all of this work constructs networks of pairwise 
relationships between genes, indicating that the genes are co-expressed (Allocco et al. 
2004; Arkin and Ross 1995; Jordan et al. 2004; Lee et al. 2004; Tavazoie et al. 1999).  
Co-expression is a symmetric relationship (if A is related to B, then B is related to A), 
such as correlation. 
 
This paper describes a new algorithm for building a Boolean network from large amounts 
of microarray data, and describes some of the properties of the resulting network. The 
algorithm classifies the expression level of each gene on each array as “low” or “high” 
relative to a threshold, and finds all Boolean relationships between pairs of genes, 
including not only symmetric relationships capturing co-expression, but also “if-then” 
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relationships (called implications) which are asymmetric. For example, a relationship 
could say “if gene A’s expression level is high, then gene B’s expression level is almost 
always low (more concisely, “A high implies B low” or “A high⇒B low”). It is 
important to understand that an implication does not necessarily imply causality. Instead, 
it is an empirically observed invariant on the expression levels of two genes.  A network 
of implications is a directed graph, which connects nodes with arrows, instead of the 
more common undirected graphs used for many biological networks. 
 
This approach is conceptually simple. The relationships are intuitive – they are 
immediately evident upon inspection of a scatterplot of the data points of expression 
levels for the two related genes, and are thus completely transparent to biologists, unlike 
some approaches, which find relationships that can be more difficult for users to 
interpret.  
 
Symmetric relationships are implications in both directions.  Genes A and B are strongly 
correlated, in general, when A high⇒B high and A low⇒B low.   In this case, A and B 
are said to be equivalent.  A second kind of symmetric relation occurs when A high⇒B 
low and A low⇒B high, the expression levels of A and B are usually strongly negatively 
correlated, and A and B are said to be opposite.  Implications in one direction only are 
called asymmetric.  Implications capture many more significant relations between pairs of 
genes than correlation. In other words, there may be a very significant Boolean 
implication between genes whose expression is very weakly correlated. There are six 
possible Boolean relationships: two symmetric (equivalent and opposite) and four 
asymmetric (low ⇒ low, low ⇒ high, high ⇒ low, high ⇒ high). 
 
Boolean networks were constructed from 4,787 publicly available Affymetrix U133 Plus 
2.0 human, 2,154 Affymetrix mouse 430 2.0, and 450 Affymetrix Drosophila genome 1 
arrays from Gene Expression Omnibus (Edgar et al. 2002). All the datasets were 
normalized using the RMA algorithm (Irizarry et al. 2003). There are 208 million, 336 
million and 17 million Boolean relationships in human, mouse and fruit fly respectively. 
Additionally, 4 million Boolean relationships are conserved in human and mouse and 
41,260 Boolean relationships are conserved in human, mouse and fruit fly. The algorithm 
is fast enough to scale to large volumes of data. The algorithm that builds a complete 
gene network using 54,677x54,677 gene pairs with more than 9,500 expression values 
per gene-pair in less than 3 hours. The Boolean relationships are available for exploration 
at http://gourd.stanford.edu/~sahoo/recomb07/. 
 
The relationships in the resulting network are often biological meaningful. Differences 
associated with gender and tissue-type is readily apparent. Relationships between genes 
that are active only during specific developmental or differentiation stages are also 
evident. Large groups of equivalent genes associated with the cell cycle appear in the 
network for each species. Highly conserved relationships are enriched with the cell cycle 
and central nervous system specific genes. 
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Results 

Boolean relationships are present in gene expression microarray data. 
 
The two symmetric Boolean relationships correspond to two sparse quadrants in a 
scatterplot, as described in the materials and methods section. First, the low-high and 
high-low quadrant can be sparse as shown in Figure 1(a), which shows that CCNB2 and 
BUB1B are equivalent. Highly positively correlated genes are almost always equivalent. 
Alternatively, the low-low and high-high quadrants can be sparse, as shown in Figure 
1(d), which shows that EED and XTP7 are opposite.. Negatively correlated genes are 
often opposite. Notice that it is not possible to have both the low-low and high-low 
quadrants be sparse because that would require the second gene to be always low; 
similarly, it is not possible for the low-high and low-low quadrants both be sparse. 
 
There are four possible asymmetric Boolean relationships,, which correspond to one 
sparse quadrant. Figure 1(b) shows where the quadrant for gene PTPRC low and gene 
CD19 high is sparse so PTPRC low⇒CD19 low. Figure 1(c) shows that XIST high 
⇒RPS4Y1 low (this relationship was previously pointed out in paper describing the 
CELSIUS database of microarray data (Day et al. 2007), while annotating microarrays 
with male and female). Figure 1(e) shows FAM60A low⇒NUAK1 high. In this case, 
when FAM60A expression level is low, NUAK1 expression level is high, but when 
FAM60A expression level is high, NUAK1 expression level is evenly distributed 
between high and low. Finally, Figure 1(f) shows that COL3A1 high⇒SPARC high. This 
relationship is complex, since it can be viewed as a combination of multiple kinds of 
relationships including linear and constant. However, Boolean analysis discovers the 
simple logical implication: COL3A1 high⇒SPARC high.  
 
Notice that for each of the above Boolean relationships there is always a contrapositive 
Boolean relationship that holds. For example, PTPRC low⇒CD19 low so CD19 high⇒ 
PTPRC high. Similarly, XIST high⇒RPS4Y1 low, so RPS4Y1 high⇒XIST low, 
FAM60A low⇒NUAK1 high so NUAK1 low⇒FAM60A high and COL3A1 high⇒ 
SPARC high so SPARC low ⇒ COL3A1 low. 
 
A large number of Boolean relationships exist in gene expression data. 
 
A very large number of Boolean relationships were found in microarray data for 
individual species. There are 208 million implications in the human dataset, even with a 
stringent requirement for significance (a permutation test yields a false discovery rate 
(FDR) of 10-4).  The mouse dataset has 336 million implications (FDR = 6x10-5), and the 
fruit fly dataset has 17 million implications (FDR = 6x10-6). Of the 208 million 
implications in the human dataset, 128 million are high⇒low, 38 million are low⇒low, 
38 million are high⇒high, 2 million are low⇒high, 1.6 million relations are equivalences 
and 0.4 million are opposite. Table 1 summarizes the number of Boolean relationships 
found in each dataset. In all cases, the most common relationships are the high⇒low 
type, and the opposite relations are the most uncommon. As can be seen from Table 1, in 
the human dataset 1% of the total Boolean relationships are symmetric, while the 
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remaining 99% are asymmetric. Similarly, in the mouse dataset 1.4% of the total Boolean 
relationships are symmetric, and 98.6% are asymmetric. However, in fruit fly 12% of the 
Boolean relationships are symmetric. The number of low⇒low relationships is the same 
as the number of high⇒high relationships because of contrapositives. 
 
Asymmetric Boolean relationships are far more numerous than symmetric 
relationships. 
 
Discovery of asymmetric Boolean relationships is one of the novelties of Boolean 
analysis, as they have not been explored in the literature thoroughly. Our analysis 
discovers a large number of asymmetric Boolean relationships (low⇒high, high⇒low, 
low⇒low and high⇒high) compared to symmetric Boolean relationships (equivalent and 
opposite). 
 
Networks based on correlation of gene expression would fail to include these asymmetric 
relations. 98.8% of the asymmetric Boolean relationships on the human CD genes have 
correlation coefficients ranging from –0.65 to 0.65. Further, as expected most of the 
low⇒high and high⇒low relationships have negative correlation coefficients. The 
low⇒high relationships have correlation coefficients from –0.55 to 0 and the high⇒low 
relationships have correlation coefficients from –0.65 to 0.25 as shown in Figure 2(f) and 
Figure 2(c) respectively.  
 
Low⇒low and high⇒high have mostly positive correlation coefficients, from –0.15 to 
0.95, as shown in Figure 2(b) and Figure 2(g). (They have exactly same distribution of 
correlation coefficients because of contrapositives.) Some of these relationships have 
very high correlation coefficients; for example, relationships with correlation coefficient 
0.933 and 0.7963 are shown in Figure 2(h) and Figure 2(i). 
 
Boolean equivalences compares well to correlation-based approaches. 
 
In order to compare the properties of Boolean networks to more common correlation-
based networks, both types of networks were constructed based on human CD antigen 
genes. These genes were chosen as a relatively small and coherent subset of biologically 
interesting genes. A complete correlation-based network on human CD genes was 
computed as described in Materials and Methods.  
 
Figure 2 shows histograms of the Boolean relationships with respect to the Pearson’s 
correlation coefficients. As can be seen from the figure, the number of equivalences from 
the Boolean network that are also in the correlation network increases linearly with the 
correlation coefficient. Gene pairs that have no Boolean relationships also have low 
correlation coefficients around zero. There are a substantial number of Boolean 
relationships, for which the correlation coefficient is small. These pairings cannot be 
identified by a pure correlation-based approach. Four examples of scatter plots are shown 
in Figure 2 (bottom row) to demonstrate the differences between Boolean relationships 
and correlation-based relationships. 
 



DRAFT – Please do not distribute 

Boolean networks are not scale free. 
 
It has often been observed that other biological networks are scale-free (Barabasi and 
Albert 1999; Barabasi and Oltvai 2004; Bhan et al. 2002; Featherstone and Broadie 2002; 
Jeong et al. 2000; Jeong et al. 2001), to study the global properties of Boolean network, 
we plotted frequency of the probesets against their degree (number of Boolean 
relationships) as shown in Figure 3. Each log-log plot shows on the horizontal axis the 
degree, while the vertical axis shows the number of probesets that have the number of 
relationships to other probesets. The top row in Figure 3 corresponds to the human 
Boolean network. From left to right are shown the total Boolean relationships, only 
symmetric Boolean relationships, and only asymmetric Boolean relationships. These 
plots are comparable to the Boolean networks for mouse and fruit fly (as shown in 
Supplementary Figure 1). The middle row in Figure 3 corresponds to the conserved 
Boolean network between human and mouse, constructed of relationships that are present 
in both human and mouse. Finally, the bottom row in Figure 3 shows the conserved 
Boolean network between human, mouse and fruit fly. As can be seen from the figures, 
the plots for total Boolean relationships (1st column in Figure 3) are non-linear. However, 
the plots for symmetric and asymmetric Boolean relationships (2nd and 3rd columns in 
Figure 3) are close to linear. Interestingly, although one might anticipate that a network, 
which has not been transitively reduced (see materials and methods), would have more 
nodes with high degree (relative to a power law behavior), we found the opposite. The 
Boolean network described here scales below a power law at high degree. 
 
Boolean relationships are highly conserved across species. 
 
A network can be constructed consisting of the relations that hold between orthologous 
genes in multiple species. The network of relationships that are conserved in humans and 
mice network has a total of 3.2 million Boolean relationships consisting of 8,000 
low⇒high, 2 million high⇒low, 0.5 million low⇒low, 0.5 million high⇒high, 10,814 
equivalent and 94 opposite implications. Applying the same analysis to randomized 
human and mouse datasets yielded no conserved Boolean relationships, for an estimated 
false discovery rate of less than 3.1e-7. An analogous network of implications conserved 
across human, mouse and fruit fly has 41,260 Boolean relationships: 24,544 high⇒low, 
8,060 low⇒low, 8,060 high⇒high and 596 equivalent. The false discovery rate for the 
conserved human, mouse and fruit fly Boolean network is less than 2.4e-5.  
Figure 4 shows three examples of highly conserved Boolean relationships from human, 
mouse and fruit fly. The first row in Figure 4 is an example of equivalent relationships 
that are conserved in all three species. The middle and bottom rows show highly 
conserved high⇒low and high⇒high relationships.  
 
The connected components of the network of equivalent relationships that were 
conserved in human, mouse, and fruit fly were examined (a connected component of an 
undirected graph is a set of genes where there is a path between every pair of genes). The 
algorithm found 13 different connected components. However, there are two distinct 
large components. The largest component has 178 genes including BUB1B, EZH2, 
CCNA2, CCNB2 and FEN1. The genes belong to this component were analyzed using 
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DAVID functional annotation tools (Dennis et al. 2003; Hosack et al. 2003). The 
functional annotation analysis indicates DNA replication (2.03e-14, 19 genes) and cell 
cycle process (1.06e-13, 30 genes) as significant interesting gene ontology annotations 
for the largest component. The second component has 32 genes with transport (2.55e-08, 
16 genes) and synaptic transmission (1.04e-08, 8 genes) as significant gene ontology 
annotations. Further, the functional annotation analysis discovers proteasome and cell 
cycle as significant KEGG pathways for the first component. The second component was 
enriched for calcium signaling pathway in KEGG database. The list of genes for the 
components and the DAVID functional annotation results are included in the 
supplementary information. 
 
Boolean network computation is fast. 
 
The total computation time to construct the network of implications for the human dataset 
was 2.5 hours on a 2Ghz computer with 8GB of memory. The human dataset consisted of 
a total of 54,677 distinct probesets from 4,787 microarrays. The computation time for the 
mouse dataset was 1.6 hours. This data set has 45,101 probesets and 2,154 microarrays. 
Finally, the computation time for fruit fly dataset, consisting of 14,010 probesets and 450 
microarrays, was 2 minutes.  
 

Discussion 

 
Boolean analysis is simple, fast and efficient. 
 
Boolean analysis provides a simple intuitive characterization of relationships between 
pairs of genes. A threshold is determined to classify low and high values, after fitting a 
step function to the sorted gene expression levels using the StepMiner algorithm (Sahoo 
et al. 2007), which sets the threshold near the mean of uniformly distributed sets, and 
otherwise places it at the largest gap between clusters of relatively low and high values. 
The Boolean analysis algorithm finds a large number of Boolean implications even if the 
gene expression values are not Boolean. In many cases the relationships are more 
complicated than Boolean implication. However, it may be useful to view them as 
Boolean implications because these are easy to manipulate. Also, Boolean relationships 
are fast to compute because bit vector operations are fast compared to floating point 
operations. The computation time for the human dataset was 2.5 hours, whereas 
correlation coefficient computation might take multiple days in a single computer. 
 
Boolean equivalence vs. correlation-based relationship 
 
As shown in Figure 2, gene pairs with high correlation coefficient are more likely to be 
equivalent in the Boolean analysis. However, there are exceptions, as shown in the plot 
between COL3A1 and COL1A1. Here, the correlation coefficient (0.933) is extremely 
high and the relationship is expected to be equivalent. However, there are many 
microarrays where the expression levels for COL3A1 is high and COL1A1 is low. 
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Therefore, Boolean analysis concludes this relationship as COL3A1 low ⇒ COL1A1 
low. However, there is a very strong linear component in the scatter plot, which a 
correlation-based relationship can distinguish. Both the Boolean and the correlation-
based characterization may be important biologically in different contexts. Most methods 
to compute correlation-based networks use a threshold of more than 0.7 on the correlation 
coefficient (Jordan et al. 2004; Lee et al. 2004; Tsaparas et al. 2006). Figure 2 shows that 
a very large proportions of asymmetric Boolean relationships have correlation coefficient 
less than 0.65. Note that 20% of the symmetric Boolean relationships have correlation 
coefficient less than 0.65. Correlation-based networks will miss these relationships, 
which might be biologically relevant. Figure 2 shows an example scatter plot between 
LAIR1 and WAS with correlation coefficient 0.5158 that our approach identifies as an 
equivalence. Similarly, TLR2 and ITGAM have a correlation coefficient of 0.7 and are 
considered equivalent. However, the plot between VPREB1 and IGLL1 shows a higher 
correlation coefficient than 0.7, and we infer an asymmetric Boolean relationship 
(VPREB1 high ⇒ IGLL1 high). 
 
Asymmetric Boolean relationships 
 
As can be seen, asymmetric Boolean relationships are prevalent in the Boolean analysis. 
Moreover, a huge percentage of these relationships are high⇒low. One can imagine that 
if there were n mutually exclusively expressed genes, there would be n*(n-1) high⇒low 
relationships. Furthermore, tissue specific genes are often mutually exclusively expressed 
and could be a major contributor of the high⇒low relationships. Additionally, 
asymmetric relationships have low correlation coefficient, as expected because Pearson’s 
correlation is symmetric, suggesting that correlation-based approaches identify them 
poorly. Interestingly, although one might imagine that different probesets for the same 
gene should have positive symmetric relationships, we find that they have asymmetric 
Boolean relationships consistent with previous findings of low average correlation among 
them (Liao and Zhang 2006). Therefore, Boolean analysis might be helpful in pointing 
out important differences among different probesets for the same gene. We believe that 
asymmetric Boolean relationships are rich in important biological relationships and might 
be helpful in generating new biological hypotheses in the future. We have shown that 
large numbers of asymmetric relationships are highly conserved and they follow some of 
the currently known biological phenomena. 
 
Highly conserved Boolean relationships 
 
A conserved Boolean relationship is one that holds between orthologous genes across 
diverse species. There are many symmetric and asymmetric relationships that are 
conserved in human, mouse and fruit fly. Figure 4 shows three examples. The top row in 
Figure 4 shows that CCNB2 (CycB in fruitfly) and BUB1B are equivalent in all three 
species. (In this case, a network of correlated genes would also be able to find these 
conserved relationships because they are very well correlated in each species.). Finding 
this relationship becomes feasible because of the efficiency of the Boolean analysis.  
It is very well known that both CCNB2 and BUB1B are related to cell cycle (Bolognese 
et al. 1999; Davenport et al. 1999). It might not be surprising to see that they are very 
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highly correlated in all three species. However, it is surprising to note that only a small 
number of currently known cell cycle genes have this property. The bottom row in Figure 
4 shows an asymmetric relationship between two very well known cell cycle regulators, 
E2F2 and PCNA (Ivey-Hoyle et al. 1993; Mathews et al. 1984; Miyachi et al. 1978). The 
middle row in Figure 4 shows an asymmetric relationship that is conserved in all three 
species. GABRB1 is a receptor to an inhibitory neurotransmitter in vertebrate brain 
(Kirkness et al. 1991). It is surprising to see that the relationship between GABRB1 and 
BUB1B is conserved in vertebrate and arthropods (fruit fly). This relationship might 
suggest that cells expressing this particular neurotransmitter are less likely to be 
proliferating. To our knowledge, this is the first algorithm that finds asymmetric Boolean 
relationships that are conserved across species as diverse as vertebrates and arthropods. 
 
Boolean relationships show gender differences, tissue differences, development, 
differentiation and co-expression. 
 
Boolean relationships represent a wide variety of currently known biological phenomena. 
The generated networks contain relationships that show gender differences, development, 
differentiation, tissue difference and co-expression. The scatter plot between XIST and 
RPS4Y1 in Figure 5(a) is an example of an asymmetric Boolean relationship that shows 
gender difference. RPS4Y1 is expressed only in certain male tissues because it is present 
solely on the Y chromosome (Weller et al. 1995) and XIST is normally expressed only in 
female tissues (Brockdorff et al. 1991; Brown et al. 1991), so RPS4Y1 and XIST are 
rarely expressed together on the same array.  Hence, the relationships RPS4Y1 high ⇒ 
XIST low and XIST high ⇒ RPS4Y1 low hold.  In the network, RPS4Y1 is equivalent to 
four other genes, all of which are Y-linked.  RPS4Y1 low⇒ ACPP low (Figure 5(b)), 
KLK2 low, and KLK3 (PSA) low, all of which are prostate-specific (Sharief et al. 1994). 
Some of the relationships capture the hierarchy of tissue types.  For example, GABRB1 is 
specific to the central nervous system (Roth et al. 2006), and ACPP high ⇒ GABRB1 
low (Figure 5(c)), because the prostate is distinct from the CNS.  On the other hand, 
GABRA6 is primarily expressed in the cerebellum, and we see that GABRB1 low ⇒ 
GABRA6 low, because the cerebellum is part of the CNS (more literally, if a tissue 
sample is not part of the CNS, it is also not part of the cerebellum).  
 
To show an example of a Boolean relationship between two developmentally regulated 
genes, we identify HOXD3 and HOXA13 as shown in Figure 5(d). HOXD3 and 
HOXA13 have their evolutionary origin from fruit fly antennapedia (Antp) and 
ultrabithorax (UBX) respectively (Carroll 1995). It was recently discovered that HOXD3 
and HOXA13 are expressed in human proximal and distal sites respectively (Rinn et al. 
2007), a pattern of expression, which is evolutionarily conserved from fruit flies. The 
human Boolean network indeed shows that high expression of HOXD3 and HOXA13 are 
mutually exclusive (HOXD3 high ⇒ HOXA13 low), which is consistent with the above 
paper. (Contrary to the findings of that paper, this relationship is not highly conserved in 
our analysis because the mouse and fruit fly orthologous probes for the desired genes did 
not have a good dynamic range in the dataset, for unknown reasons.)  
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Relationships between genes expressed during the process of differentiation also appear 
in the network. For example, a Boolean relationship between two key marker genes from 
B cell differentiation, KIT and CD19 as shown in Figure 5(e). KIT is a hematopoietic 
stem cell marker (Ikuta et al. 1991) and CD19 is a well-known B cell differentiation 
marker (Stamenkovic and Seed 1988). Our algorithm discovers that KIT and CD19 are 
rarely expressed together and thus the Boolean relationship:  CD19 high ⇒ KIT low and 
KIT high ⇒ CD19 low. 
 
From inspecting the human network, it is clear that hundreds of genes are co-expressed 
that are related to the cell cycle. Two such genes, CDC2 and CCNB2, are shown in 
Figure 5(f). 
 
The Boolean network is not scale free 
 
As shown in Figure 3, the log-log plots between degree of connectedness, and frequency 
is highly non-linear. For a scale free network we expect the plot to show a linear power 
law distribution (Barabasi and Albert 1999; Barabasi and Oltvai 2004; Bhan et al. 2002; 
Featherstone and Broadie 2002; Jeong et al. 2000; Jeong et al. 2001). It has been shown 
(Barabasi and Albert 1999) that the combination of continual additions of nodes to a 
network, together with the property that new connections are more likely to be made to a 
highly connected node, naturally leads to power law behavior. However, our Boolean 
analysis found sub-power law scaling of number of nodes with respect to their degree. 
 
Comparison with other approaches for building gene networks 
 
Traditional analysis of a large microarray dataset often begins with pairwise analysis of 
genes. A large number of algorithms have been proposed to infer biologically relevant 
gene pairs, presented in the form of a gene regulatory network or a co-expression 
network (Allocco et al. 2004; Arkin and Ross 1995; Jordan et al. 2004; Lee et al. 2004; 
Tavazoie et al. 1999).  Most clustering algorithms (Cho et al. 1998; Eisen et al. 1998; 
Spellman et al. 1998) also rely on pairwise gene expression analysis. Sophisticated 
algorithms including, Bayesian analysis (Friedman et al. 2000; Friedman 2004; Lee et al. 
2006; Li and Chan 2004; Pe'er et al. 2001; Segal et al. 2004; Segal et al. 2005; Segal et 
al. 2001), Graphical Gaussian Models (Kishino and Waddell 2000; Schafer and Strimmer 
2005) and mutual information (Basso et al. 2005; Butte and Kohane 2000; Margolin et al. 
2006; Wang et al. 2005) have been employed to infer the underlying network structure. 
Most of the above approaches discover symmetric relationships and require pairwise 
gene expression analysis. The main drawback of the pairwise gene expression analysis is 
the computation time required to investigate a large number of gene pairs. A massively 
parallel grid-computing environment has been used to reduce the computation time 
(Swain et al. 2005), but this approach demands costly machines. Boolean analysis finds a 
large number of asymmetric relationships and it is relatively fast compared to most of the 
above approaches. 
 
Previously developed Boolean networks have only been applied to smaller sized datasets 
(Gupta et al. 2007; Ideker et al. 2000; Kauffman 1971; Liang et al. 1998; Pal et al. 2005; 
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Shmulevich and Zhang 2002; Shmulevich and Kauffman 2004). Further, Boolean 
implication network similar to our network have been used for probabilistic reasoning 
(Liu and Desmarais 1997). 
 
Large sized microarray datasets have been collected, analyzed (Day et al. 2007; Rhodes 
et al. 2007) and applied to the study of human cancer (Hanauer et al. 2007). Boolean 
analysis can potentially be applied to the above datasets to explore meaningful Boolean 
relationships. Recently, in the CELSIUS database (Day et al. 2007), a gene coexpression 
network was built using a subset of 3600 probesets only. However, it is feasible to apply 
our Boolean analysis to the full dataset. 
 
 
Comparison with previous approaches for building conserved gene-interaction 
network 
 
Conservation across multiple species has been used to infer more likely regulatory 
relationships (Chalmel et al. 2007; Sinha et al. 2004; Strand et al. 2007; Stuart et al. 
2003; Tamada et al. 2005; Tirosh et al. 2006; Tsaparas et al. 2006; van Noort et al. 
2003). Many of these algorithms suffer from the same computational bottleneck as 
building co-expression networks or clustering. Moreover, it is hard to detect conserved 
pairs with low correlation coefficient, although they too may be biologically meaningful, 
as we will demonstrate. It is easy to perform conservation analysis on Boolean network, 
which involves checking if the orthologous gene pairs have the same Boolean 
relationships, while other approaches require non-trivial probabilistic measure of 
conservation. Numerous studies use co-expression, while building conserved gene-
interaction networks. An early study of this type (van Noort et al. 2003) improved the 
accuracy of predicting functional gene interactions by using conserved co-expression 
between Saccharomyces cerevisiae and Caenorhabditis elegans. They used a correlation 
coefficient threshold of 0.6. Subsequently, another study (Stuart et al. 2003) identified 
22,163 gene pairs from 3,182 DNA microarrays from humans, flies, worms and yeast. 
This study used a rank order statistic to compute a probabilistic measure of the conserved 
coexpression in multiple species. Further, Bayesian analysis was combined with 
conservation to build gene networks for yeast and human using cell cycle data (Tamada 
et al. 2005). Later studies focus on human and mouse to discover conserved gene 
expression in brain (Strand et al. 2007) and gametogenesis (Chalmel et al. 2007). None 
of the above algorithms predicts conserved asymmetric relationships. In addition to 
symmetric relationships (equivalent and opposite), Boolean analysis is also capable of 
discovering a large number of conserved asymmetric Boolean relationships. Moreover, 
Boolean analysis provides more transparent pair-wise relationships (as the Boolean 
relationships are directly visible in the scatter plot) compared to other approaches 
described above.  
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Materials and methods 

Data collection and preprocessing 
 
CEL files for 4,787 Affymetrix U133Plus 2.0 human microarrays, 2,154 Affymetrix 430 
2.0 mouse arrays, and 450 Affymetrix Genome 1.0 Drosophila were downloaded from 
NCBI’s Gene Expression Omnibus (Edgar et al. 2002).  These array types were chosen 
because they are widely used, and because results from different arrays can be compared 
more easily than results from two-channel arrays.  The datasets were normalized using 
the standard RMA algorithm (Irizarry et al. 2003); however, the available version of 
RMA uses excessive amounts of primary memory when normalizing thousands of arrays, 
so the program was re-written to increase memory efficiency. Boolean expression levels 
were assigned for each gene in each array, using the log (base 2) of the expression values 
(Figure 6 illustrates this process). First, a threshold was assigned to each gene using the 
StepMiner algorithm (Sahoo et al. 2007), which was originally designed to fit step 
functions to time-course data.  For this application, the expression values for each gene 
were ordered from low-to-high, and StepMiner was used to fit a rising step function to 
the data that minimizes the differences between the fitted and measured values.  This 
approach places the step at the largest jump from low values to high values (but only if 
there are sufficiently many expression values on each side of the jump to provide 
evidence that the jump is not due to noise), and sets the threshold at the point where the 
step crosses that original data (as shown in Figure 6).  In the case where the gene 
expression levels are evenly distributed from low to high, the threshold tends to be near 
the mean expression level. If the assigned threshold for a gene is t, expression levels 
above t + 0.5 are classified as “high,” expression levels below t−0.5 are classified as 
“low,” and values between t −0.5 and t+0.5 are classified as “intermediate.”  Whenever 
more than 2/3 of the expression values of a gene were at an intermediate level of 
expression, the gene was excluded from further analysis, due to insufficient dynamic 
range in the expression values. 
 
Discovery of Boolean relationships 
 
All pairs of features with sufficient dynamic range were analyzed to discover potential 
Boolean relationships. There are six possible Boolean relationships between genes A and 
B that are constructed from four possible Boolean implications: A low ⇒ B low, A low 
⇒ B high, A high ⇒ B low, and A high ⇒ B high. Each of the above implication is 
detected by checking whether one of the four quadrants in the scatter plot of Figure 6 is 
significantly sparsely populated with points compared with the other quadrants 
(intermediate values for A and B are ignored in this analysis). There are at most two 
possible sparse quadrants because the thresholds always separate a reasonable number of 
low and high expression levels for each gene. Each sparse quadrant corresponds to an 
implication. If A high ⇒ B high and A low ⇒ B low, A and B are considered to have 
equivalent levels of Boolean expression.  When A high ⇒ B low and A low ⇒ B high, A 
and B are considered to have an opposite Boolean relationship. In both of these cases, 
two diagonally opposite quadrants are significantly sparse. In other cases, where there is 
only one sparse quadrant, the Boolean relationships between A and B have the same 
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name as Boolean implications: A low ⇒ B low, A low ⇒ B high, A high ⇒ B low, and 
A high ⇒ B high. There are two tests that must succeed for the relationship between A 
and B to be considered an implication.  The following tests are performed to check 
whether the low-low quadrant is sparse that gives A low ⇒ B high. First, the number of 
expression values in the sparse quadrant must be significantly less than the number that 
would be expected under an independence model, given the relative distribution of low 
and high values for A and B.  Specifically, if a00, a01, a10, a11 are the number of 
expression values where A and B are low and low, low and high, high and low, and high 
and high, respectively, a threshold on the following statistic is performed to test whether 
the low-low quadrant is sparse. 
 total = a00+ a01+ a10+ a11 

 expected = (a00+ a01) * (a00+ a10)/ total 
 observed = a00 
 
 
 
 
Second, the observed values in the sparse quadrant are considered erroneous points and a 
sparse quadrant must have a small number of erroneous points. A maximum likelihood 
estimate of the error rate is computed as follows.  
 
 
 
 
A second threshold on this error rate is performed to ensure that the quadrant is really 
sparse. If the above tests succeed, the low-low quadrant is considered sparse and 
therefore, A low ⇒ B high is inferred. Similarly, the above tests are repeated for all other 
quadrants. A threshold of 3 for the first statistic and a threshold of 0.1 for the error rate 
are used here to discover the Boolean relationships. A Boolean network (directed graph) 
is built from the Boolean relationships, where nodes are A high or A low for each gene A 
and edges are Boolean implications. For example, there is a directed edge from A low to 
B high if there is a Boolean implication A low ⇒ B high. Boolean implications are 
transitive e.g. whenever A low ⇒ B high and B high ⇒ C low, A low ⇒ C low. 
Therefore, the Boolean network is almost transitively closed. A straightforward transitive 
reduction algorithm, however, can be applied to reduce the network size. 
 
Computation of False Discovery Rate 
 
To compute the false discovery rate (Storey and Tibshirani 2003), we permute randomly 
the expression values for each gene independently. Then, we run the Boolean analysis 
described above to build a complete Boolean network. The above analysis is repeated 
twenty times to compute the average number of Boolean relationships in the randomized 
data. The ratio of the average number of Boolean relationships in the randomized data to 
the original data is considered the false discovery rate of the Boolean analysis. 
 

a00 

(a00+ a01) 

a00 

(a00+ a10) 
+ ( ) 1 

2 
error rate = 

statistic = 
(expected – observed) 

expected √ 
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Correlation network for human CD genes 
 
Human CD (cluster of differentiation) genes were selected for comparison against a 
correlation-based network. The set of genes includes 966 Affymetrix U133 Plus 2.0 
human probesets. Pearson’s correlation coefficients for all 466,095 pairs of genes were 
computed. Boolean analysis is also performed on this data to compare Boolean network 
with the correlation-based network. 
 
Discovery of conserved Boolean relationships 
 
Mouse and fruit fly orthologs for human genes were selected from the EUGene database 
(Gilbert 2002). For each Boolean relationship in the human dataset, a conserved 
relationship is detected if any of the mouse orthologs of the first human gene has a 
significant Boolean relationship with another mouse ortholog of the second human gene. 
To find conserved Boolean relationships in all three species, we check if any of the fruit 
fly orthologs of the first mouse gene has a significant Boolean relationship with another 
fruit fly orthologs of the second mouse gene for each conserved relationships in human 
and mouse. 
 
Connected component analysis 
 
Human genes for the highly conserved relationships in all three species were selected for 
the connected component analysis. An undirected graph was built with the gene names as 
nodes and the edges are from Boolean equivalent relationships. Connected component 
analysis was performed using a standard union-find algorithm on the undirected graph to 
find clusters of genes that are connected together. 
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Figure legends 

Figure 1. Boolean relationships: Six different types of Boolean relationships between 
pairs of genes taken from the Affymetrix U133 Plus 2.0 human dataset. Each point in the 
scatter plot corresponds to a microarray experiment, where the value for the x-axis is 
gene expression for the x-axis gene and the value for the y-axis is gene expression for the 
y-axis gene. There are 4,787 points in each scatter plot. (a) Equivalent relationship 
between CCNB2 and BUB1B. (b) PTPRC low ⇒ CD19 low. (c) XIST high ⇒ RPS4Y1 
low. (d) Opposite relationship between EED and XTP7. (e) FAM60A low ⇒ NUAK1 
high. (f) COL3A1 high ⇒ SPARC high.  
 
Figure 2. Comparison of Boolean network with correlation-based network : On 
human CD (clusters of differentiation) genes: this plot shows the histogram of different 
types of Boolean relationships. (a) Equivalent. (e) Opposite. (b) Low ⇒ Low. (c) High ⇒ 
Low. (f) Low ⇒ High. (g) High ⇒ High. (d) No relationships. Example scatter plots of 
gene pairs with their correlation coefficient. (h) COL3A1 low ⇒ COL1A1 low, 
correlation coefficient = 0.933. This is an example of a clear asymmetric relationship 
with very high correlation coefficient. (i) VPREB1 high ⇒ IGLL1 high, correlation 
coefficient = 0.7963. This is an example of a clear asymmetric relationship with moderate 
correlation coefficient. (j) TLR2 and ITGAM are equivalent, correlation coefficient = 0.7. 
This is an example of equivalent relationship with low correlation coefficient. (k) LAIR1 
and WAS are equivalent, correlation coefficient = 0.5158, is an example of equivalent 
relationship with very low correlation coefficient.  
 
Figure 3. Properties of Boolean network: Log-log plot of the histogram of the 
probesets with respect to their number of Boolean relationships. Human Boolean 
network: (a) total, (b) symmetric, (c) asymmetric Boolean relationships. Conserved 
human and mouse Boolean network: (d) total, (e) symmetric, (f) asymmetric Boolean 
relationships. Conserved human, mouse and fruit fly Boolean network: (g) total, (h) 
symmetric, (i) asymmetric Boolean relationships. 
 
Figure 4. Highly conserved Boolean relationships: Orthologous CCNB2 and BUB1B 
equivalent relationships: (a) Bub1 vs CycB in fruit fly, (b) Bub1b vs Ccnb2 in mouse, (c) 
BUB1B vs CCNB2 in human. Orthologus BUB1B high ⇒ GABRB1 low: (d) Bub1 vs 
Lcch3 in fruit fly, (e) Bub1b vs Gabrb1 in mouse, (f) BUB1B vs GABRB1 in human. 
Orthologous E2F2 ⇒ PCNA high: (g) E2f vs mus209 in fruit fly, (h) E2f1 vs Pcna in 
mouse, (i) E2F2 vs PCNA in human. 
 
Figure 5. Boolean relationships follow known biology: (a) Gender difference, XIST 
high ⇒ RPS4Y1 low, male is different from female. (b) Gender tissue specific, RPS4Y1 
low ⇒ ACPP low, only males have prostates. (c) Tissue difference, ACPP high ⇒ 
GABRB1 low, prostate is different from brain. (d) Development, HOXD3 high ⇒ 
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HOXA13 low, anterior is different from posterior. (e) Differentiation, KIT high ⇒ CD19 
low, Differentiated B Cell is different from HSC. (f) Co-expression, CDC2 vs CCNB2.   
 
Figure 6. Boolean analysis: The expression levels of each probeset are sorted and a step 
function is fitted (using StepMiner) to the sorted expression level w minimizes the square 
error between the original and the fitted values. A threshold t is chosen, where the step 
crosses the original data. The region between t-0.5 and t+0.5 is classified as 
“intermediate”, the region below t-0.5 is classified as “low” and the region above t+0.5 is 
classified as “high”. The examples show probesets for two genes CDH1 and CDC2. As 
can be seen, CDH1 has a sharp rise between 6 and 9 and the StepMiner algorithm was 
able to assign a threshold in this region. CDC2, however, is very linear, and the 
StepMiner algorithm assigns the threshold approximately in the middle of the line. A 
scatter plot is shown to illustrate the analysis. Each point in the scatter plot corresponds to 
a microarray experiment, where the value for the x-axis is CDC2 expression and the 
value for the y-axis is CDH1 expression. Boolean analysis is performed on a pair of 
probesets, which ignores all the points that lie in the intermediate region and analyzes the 
four quadrants of the scatter plot. Four asymmetric relationships (low ⇒ low, low ⇒ 
high, high ⇒ low, high ⇒ high) are discovered, each corresponds to exactly one sparse 
quadrant in the scatter plot and two symmetric relationships (equivalent and opposite) are 
discovered each corresponds to two diagonally opposite sparse quadrants. 

Table legends 

Table 1: Number (in millions) of Boolean relationships in human, mouse and fruit 
fly datasets. The human dataset has 1% symmetric (equivalence + opposite) and 99% 
asymmetric (low ⇒ low + low ⇒ high + high ⇒ low + high ⇒ high) relationships of the 
total Boolean relationships. The mouse dataset has 1.4% symmetric (equivalence + 
opposite) and 98.6% asymmetric (low ⇒ low + low ⇒ high + high ⇒ low + high ⇒ 
high) relationships of the total Boolean relationships. The fruit fly dataset has 12% 
symmetric (equivalence + opposite) and 88% asymmetric (low ⇒ low + low ⇒ high + 
high ⇒ low + high ⇒ high) relationships of the total Boolean relationships. 
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Figures 

Figure 1. Boolean relationships 

 
Figure 2. Comparison of Boolean network with correlation-based network 
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Figure 3. Properties of Boolean network 

 
Figure 4. Highly conserved Boolean relationships 
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Figure 5. Boolean relationship follows known biology 

 
Figure 6. Boolean analysis 
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Tables 

 
 
Table 1: Number (in millions) of Boolean relationships in human, mouse and fruit fly 
datasets. 
 

Dataset Total Low 
implies 
High 

High 
implies 
Low 

Low 
implies 
Low 

High 
implies 
High 

Equivalent Opposite 

Human 
Mouse 

Fruit Fly 

208 
336 
17 

2 
8 

0.3 

128 
208 
7.3 

38 
57.6 
3.7 

38 
57.6 
3.7 

1.6 
4.1 
1.9 

0.4 
0.7 
0.1 
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Supplementary information 

Figure 1. Properties of human mouse and fruit fly Boolean networks: log-log plot of 
the histogram of the probesets with respect to their number of Boolean relationships. 
Human Boolean network: (a) Total, (b) symmetric, (c) asymmetric Boolean relationships. 
Mouse Boolean network: (d) Total, (e) symmetric, (f) asymmetric Boolean relationships. 
Fruit fly Boolean network: (g) Total, (h) symmetric, (i) asymmetric Boolean 
relationships. 

 
 
Following files can be accessed at http://gourd.stanford.edu/~sahoo/recomb07/. 
 
File 1. Connected component analysis: The cluster of genes can be found in each line as 
tab separated HUGO gene symbol name. 
 
File 2. DAVID functional annotation (GO Analysis) on the largest cluster 
File 3. DAVID functional annotation (GO Analysis) on the second largest cluster 
File 4. DAVID functional annotation (KEGG) on the largest cluster 
File 5. DAVID functional annotation (KEGG) on the second largest cluster 


